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Short-time scaling behavior of growing interfaces

Michael Krech
Fachbereich Physik, Bergische Universita¨t Wuppertal, 42097 Wuppertal, Federal Republic of Germany

~Received 20 August 1996!

The short-time evolution of a growing interface is studied within the framework of the dynamic
renormalization-group approach for the Kadar-Parisi-Zhang~KPZ! equation and for an idealized continuum
model of molecular-beam epitaxy. The scaling behavior of response and correlation functions is reminiscent of
the ‘‘initial slip’’ behavior found in purely dissipative critical relaxation~model A! and critical relaxation with
conserved order parameter~model B!, respectively. Unlike model A the initial slip exponent for the KPZ
equation can be expressed by the dynamical exponentz. In 111 dimensions, for whichz is known exactly, the
analytical theory for the KPZ equation is confirmed by a Monte Carlo simulation of a simple ballistic depo-
sition model. In 211 dimensionsz is estimated from the short-time evolution of the correlation function.
@S1063-651X~97!03001-8#

PACS number~s!: 68.35 Fx, 64.60 Ht, 05.70 Ln, 05.401j
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I. INTRODUCTION

Interface formation and growth are typical processes
nonequilibrium systems. From a technological point of vie
two important examples are fluid flow in porous media~oil
in rock! @1# and deposition of atoms during molecular-bea
epitaxy ~MBE! @1,2#. It is expected that at times much lat
than typical aggregation times and on macroscopic len
scales these interfaces develop a characteristic scaling be
ior, where the scaling exponents fall into certain dynam
universality classes@1–3# ~see below!. In certain cases, how
ever, interfaces can also show turbulent, i.e., spatial, m
scaling behavior@4#. Usually a d-dimensional interface is
embedded in (d11)-dimensional space such that the inte
face position at timet can be described by a height functio
h(x,t), where x denotes the lateral position in
d-dimensional reference plane given by, e.g., the surface
substrate in MBE. Complete information about the scal
behavior is contained in the dynamic structure fact
which is related to the time displaced height-heig
correlation function C(x2x8,t,t8)[^h(x,t)h(x8,t8)&
2^h(x,t)&^h(x8,t8)&, where a laterally translational invar
ant system is assumed. Fort,t8→`, and finite ut2t8u the
correlation function displays the asymptotic scaling behav

C~x2x8,t,t8!5ux2x8u2aFC~ ut2t8u/ux2x8uz!, ~1.1!

wherea denotes theroughnessexponent andz is the dy-
namicexponent@1,2#. For a laterally translational invarian
system the interfacial widthw2(t)[^h2(x,t)&2^h(x,t)&2 is
only a function of t and displays the scaling behavio
w(t);tb for late times, whereb5a/z is thegrowth expo-
nent. For MBE, as an example the scaling behavior displa
in Eq. ~1.1! gives access to the exponentsa and z both
experimentally by reflection high-energy electron diffracti
~see, e.g., Chap. 16 of Ref.@1#! and theoretically by con-
tinuum models@1,2# and Monte Carlo simulations@2,5#.
Since the advent of the scanning tunneling microscope di
imaging techniques for interfaces have also become an
portant experimental tool@6#.
551063-651X/97/55~1!/668~12!/$10.00
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Continuum descriptions of interfacial growth process
can be obtained from general symmetry principles and c
servation laws obeyed by the growth process@1#. The result-
ing coarse-grained growth model is given by an evolut
equation forh(x,t) that has the form of a Langevin equatio
with Gaussian distributed noise. This has been done in R
@7# for the sedimentation of granular material and leads
the well known Edwards-Wilkinson~EW! equation. It is
given by

]

]t
h~x,t !5n¹2h~x,t !1h~x,t !, ~1.2!

where the noiseh(x,t) has a Gaussian distribution wit
^h(x,t)&50 and

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~1.3!

The parametersn andD are assumed to be constants a
averageŝ & are taken over the noise distribution. From e
plicit solutions of Eq.~1.2! the exponentsz anda are known
exactly in any dimensiond of the interface:

z52, a5~22d!/2. ~1.4!

Note thatd52 is the critical dimension of Eq.~1.2!. One has
a,0 for d.2 so that the height-height correlation functio
C(x2x8,t,t8) according to Eq.~1.1! decayswith increasing
distanceux2x8u. In d52 (a50) the correlations increas
logarithmically.

The simplest possible nonlinear extension to the E
equation was considered systematically in Ref.@8#. The re-
sulting Langevin equation, usually denoted as the Kad
Parisi-Zhang~KPZ! equation, is given by

]

]t
h~x,t !5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,t !, ~1.5!

with Gaussian distributed noise according to Eq.~1.3!. The
additional parameterl is again assumed to be a constant.
the long-time limit Eq.~1.5! has a global symmetry that i
commonly denoted as Galileian invariance. This invarian
668 © 1997 The American Physical Society
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55 669SHORT-TIME SCALING BEHAVIOR OF GROWING INTERFACES
originates from the equivalence of Eq.~1.5! to the Burgers
equation for a vorticity-free velocity field
v(x,t)52¹h(x,t) and can be stated as follows. Ifh(x,t)
solves Eq.~1.5! for some noise functionh(x,t) then

h8~x,t !5h~x2wt,t !2
1

l
w•x1

1

2l
w2t ~1.6!

is a solution of Eq. ~1.5! for the noise function
h8(x,t)5h(x2wt,t) and any constant vectorw. An impor-
tant consequence is that the exponentsz anda of the KPZ
equation fulfill the exact scaling relation@9,10#

a1z52. ~1.7!

Note that ind52 the EW exponents also obey Eq.~1.7!. The
exponents of the KPZ equation are exactly known only
d51, where

z53/2, a51/2 ~1.8!

due to the existence of a dissipation-fluctuation theor
@9,11#. In d52 numerical investigations indicatez.1.6 and
a.0.4 @1#. Ford.2 the asymptotic scaling behavior is go
erned either by the EW exponents@see Eq.~1.4!, weak-
coupling regime# or by another set of exponents inaccessi
by analytical methods~strong-coupling regime! depending
on the value of the effective coupling consta
g[Dl2/(4n3) @1,9,10#. In d53 numerical evidence sug
gestsz.1.7 anda.0.3 in the strong-coupling regime@1#,
still indicating rough interfaces in contrast to the EW scali
behavior ind53 @see Eq.~1.4!#. Furthermore, it is interest
ing to note that the nonlinearity in Eq.~1.5! is the most
relevant one, i.e., if present it renders all other nonlineari
irrelevant in the renormalization-group sense in the lo
time limit. For intermediate times, however, the presence
other nonlinearities in the Langevin equation gives rise
various crossover phenomena@1,12#. The EW equation and
the KPZ equation forlÞ0 thus represent two different un
versality classes for interfacial growth. Forl,0 Eq. ~1.5!
can be viewed as a model for interfacecorrosionrather than
growth @8#.

With special regard to MBE growth it is worth noting th
the requirement of mass conservation in ideal MBE@13# ex-
plicitly excludes the KPZ nonlinearity from a correspondi
coarse-grained continuum theory. A simple Langevin eq
tion for ideal MBE has been proposed in Ref.@13# ~see also
Refs.@14,15#!:

]

]t
h~x,t !52n1¹

4h~x,t !1l1¹
2@¹h~x,t !#21h~x,t !,

~1.9!

whereh(x,t) is chosen according to Eq.~1.3!. Mass conser-
vation in combination with Eq.~1.3! immediately leads to
the exact scaling relation 2a2z1d50 for Eq. ~1.9!. Fur-
thermore, a global symmetry analogous to Eq.~1.6!, which
can be written in the operator form@16#

x→x22wt¹2, h→h2
1

l1
w•x ~1.10!
e

s
-
f
o

-

for any infinitesimal vectorw, yields the second exact sca
ing relationa1z54 @13,16#. The exponentsz and a for
ideal MBE are therefore known exactly in any dimension
physical interest:

z5~81d!/3, a5~42d!/3, ~1.11!

indicatingd54 as the critical dimension of Eq.~1.9!.
In this paper Eqs.~1.5! and ~1.9! are used as paradigm

for continuum descriptions of interfacial growth process
In linear theory~i.e., l5l150) their dynamical exponent
are given byz52 andz54 @see Eqs.~1.4! and ~A13!#, re-
spectively, and therefore Eqs.~1.5! and~1.9! may be viewed
as nonequilibrium analogs of the dynamical models A and
for critical relaxation, respectively. In order to invesitgate t
scaling behavior of, e.g.,C(x2x8,t,t8) for t8!t the initial
conditionh(x,t50)50 motivated by deposition processes
used simultaneously with Eqs.~1.5! and ~1.3! or Eqs.~1.9!
and ~1.3!, respectively. Perturbative and nonperturbative
pects of short-time scaling for the two models are discus
in Secs. II and III within the framework of dynamic reno
malization@17–19#. Numerical results from ballistic depos
tion are presented in Sec. IV and a summary of the m
results is given in Sec. V.

II. KPZ EQUATION

Due to the spatial translational invariance of the depo
tion processes studied here calculations are most co
niently performed in Fourier space. With the definitio
h(x,t)5(2p)2d*ddqexp(iq•x)h(q,t) for the Fourier trans-
form the dynamic functionalJ@ h̃,h# for the KPZ equation
@9,17,20# can be written as the sum of the Gaussian part

J0@ h̃,h#5E ddq

~2p!d
E
0

`

dtHDh̃~q,t !h̃~2q,t !2h̃~q,t !

3S ]

]t
h~2q,t !1nq2h~2q,t ! D J ~2.1!

and the interaction part

J1@ h̃,h#52
l

2E ddq1
~2p!d

E ddq2
~2p!d

E
0

`

dtq1•q2

3h̃~2q12q2 ,t !h~q1 ,t !h~q2 ,t !, ~2.2!

where h̃(q,t) is the Fourier transform of the response fie
@18#. The initial conditionh(q,0)50, which is implicitly as-
sumed in Eqs.~2.1! and ~2.2!, breaks the temporal transla
tional invariance of the KPZ dynamics. In a more gene
form this broken symmetry can be expressed in terms o
additional contribution toJ0 that is localized at the time
‘‘surface’’ t50:

Js@h#5
c

2E ddq

~2p!d
@h~q,0!2h0~q!#2. ~2.3!

From the analogy of Eq.~2.3! with surface contributions to
the Ginzburg Landau functional in the theory of static s
face critical phenomena@21# and dimensional arguments th
only possible fixed point values ofc under the renormalza
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670 55MICHAEL KRECH
tion group arec56` andc50. In the latter case additive
renormalizations ofc are supposed to be absorbed inc itself,
which can be accomplished by the dimensional regular
tion scheme. On the other hand, Eq.~2.3! generates a distri
bution function exp(2Js@h#) of initial configurations
h(q,0) of the deposition field that leaves the fixed-po
value c5` as the only choice due to the requirement
normalizability of distribution functions. Deviations ofc
from this fixed-point value therefore generate only corr
tions to scaling@17,21#, which will be disregarded here
From Eq. ~2.3! one then has the initial conditio
h(q,0)5h0(q). As shown in Appendix A,h0(q) can be in-
corporated into a source contribution to the dynamic fu
tional @see Eqs.~A3! and ~A6!# and therefore we stick to
h0(q)50 in the following. The correlation and the respon
propagator are now easily derived from Eq.~2.1!. The results
are summarized in Appendix A.

The introduction of an initial condition, striktly speaking
also breaks Galileian invariance@see Eq.~1.6!#. If one de-
mandsh(x,0)50 as the initial condition forh thenh8(x,t)
solves Eq. ~1.5! with the new initial condition
h8(x,0)52w•x/l. However, as indicated above, one on
has to transform the source fields accordingly in order
restore the old initial condition. Therefore the Galilei tran
formation @see Eqs.~1.6!, ~A3!, and~A6!#

h8~q,t !5e2 iq•wth~q,t !2~2p!d
i

l
w•

]

]q
d~q!,

h̃8~q,t !5e2 iq•wth̃~q,t !,

~2.4!

j 8~q,t !5e2 iq•wt j ~q,t !,

j̃ 8~q,t !5e2 iq•wt j̃ ~q,t !1~2p!d
i

l
w•

]

]q
d~q!d~ t !

restores the Galileian invariance of the generating functio
so that the corresponding Ward identities~see Ref.@9#! re-
main valid. Note that Eq.~2.4! should be read as an infin
tesimal transformation, i.e., terms of orderw2 have been ne-
glected.

The renormalization-group treatment of Eq.~1.5! can now
be set up following standard procedures@8,9,20#. For the
case at hand it is most convenient to combine the dim
sional regularization scheme for the KPZ equation@9# with
the treatment of the short-time singularites documented
Ref. @17#. One defines the effective coupling constant

g[Dl2/~4n3! ~2.5!

and the renormalized parametersnR, DR, andu @8,9,20#,

nR[Znn, DR[ZDD, u[Zggm«/@2d21pd/2~22d/2!#,
~2.6!

where«5d22 andm is an arbitrary momentum scale th
absorbs the naive dimension ofg @see Eq.~2.5!#. One finds
the renomalization factors@9,20# ~see also Appendix C!
-

t
f

-

-

o
-

al

n-

in

Zn511
d22

d

u

«
1O~u2!, ZD512

u

«
1O~u2!,

Zh5Z̃h51 , Zg5ZDZn
23 , ~2.7!

where the 1/« poles indicate the presence of ultraviolet si
gularities@9#. The nonrenormalization ofh and h̃ indicated
in Eq. ~2.7! is exact and a consequence of Eq.~B1! ~see
Appendix B!. The relationZg5ZDZn

23 which is equivalent
to lR5l, is a consequence of Galileian invariance in t
long-time limit †see Eq.~1.6! and Refs.@8,9,20#‡ and there-
fore also holds to all orders in perturbation theory. T
renormalization-group flow at late times is then governed
the Wilson functions@9,20#

zn~u!5
d22

d
u1O~u2!, zD~u!52u1O~u2!,

b~u!5@d221zD~u!23zn~u!#u, ~2.8!

where the relation betweenb(u), zD(u), andzn(u) is again
exact. The higher-order corrections tozn andzD indicated in
Eq. ~2.8! vanish ind51 due to the existence of a fluctuation
dissipation theorem@9,11#. The fluctuation-dissipation theo
rem also requiresZn5ZD in d51 so thatzn(u)5zD(u) and
n/D5nR/DR @see Eqs.~2.6! and ~2.7!#. We also want to
emphasize here thatzn(u) andzD(u) as given by Eq.~2.8!,
like any other finite-order perturbation theory, do not gi
access to the strong-coupling regime of Eq.~1.5! for d>2.

In analogy with critical phenomena in semi-infinite geom
etries@21# modifications of the scaling behavior of respon
and correlation functions must be expected in the ‘‘time s
face’’ t50 @17#. In order to determine the correspondin
anomalous short-time scaling dimensions of response
correlation functions we introduce two renormalization fa
torsZ0 and Z̃0 by the renormalization prescription~see also
Ref. @17#!

h~q,0!5Z0
1/2hR~q,0!, h̃~q,0!5Z̃0

1/2h̃R~q,0!. ~2.9!

TheseZ factors are determined by Eq.~B1! and the operator
identity

]

]t
h~q,t50!52Dh̃~q,t50! ~2.10!

derived in Appendix B. For the weak-coupling regime of t
KPZ equation (d51) the perturbative analysis of Append
B consitutes a rigorous proof of Eq.~2.10! and the relations
that follow from it ~see below!. In the strong-coupling re-
gime (d>2), however, the corresponding perturbati
analysis no longer provides a rigorous proof of Eq.~2.10!,
because relations that are valid order by order in perturba
theory may be violated at a strong-coupling fixed point~see
Appendix B!. This has to be kept in mind for the following
considerations, although the perturbative result can be
garded as evidence in favor of the general validity of E
~2.10!.

From Eq.~B1! for t850 we immediately find the exac
identity Z̃051. Insertion of Eqs.~2.6! and ~2.9! into Eq.
~2.10! leads to the second exact identityZ05ZD

22Z̃0, which
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55 671SHORT-TIME SCALING BEHAVIOR OF GROWING INTERFACES
determinesZ0 in terms of the knownZ factor ZD @see Eq.
~2.7!#. These identities translate into theexactrelations

z̃0~u!50, z0~u!522zD~u! ~2.11!

among the corresponding Wilson functions@see also Eq.
~2.8!#. From Eq.~2.11! one concludes that~i! the response
function G(q,t,t8) does not exhibit an anomalous scalin
dimension in the short-time limitt8→0 ~i.e., t8!t) and ~ii !
the anomalous short-time exponent of the correlation fu
tion C0(q,t,t8) can be expressed by long-time expone
@see Eq.~1.8! and the following text#. These properties se
KPZ short-time dynamics markedly apart from model A.

In order to determine the short-time scaling exponent
C(q,t,t8!t) we employ the ‘‘short-distance expansion
@17# h(q,t8→0)5s(t8)(]/]t8)h(q,t850)1••• inside the
correlation functionC, which means that

C~q,t,t8!t !5s~ t8!
]

]t8
C~q,t,t850!1•••. ~2.12!

Employing the renormalization prescriptions given by E
~2.6! and ~2.9!, one finds

s~ t8!5Z0
21/2sR~m,t8,u!,

~2.13!
]

]t8
C~q,t,t850!5Z0

1/2 ]

]t8
CR~m,q,t,t850,u!

for the corresponding renormalized short-distance expan
@see Eq.~2.12!#. Using dimensional analysis, the renorma
ized functions defined by Eq.~2.13! can be written in the
scaling form

sR~m,t8,u!5t8 f ~y8,u! with y85n~m!m2t8,
~2.14!

]

]t8
CR~m,q,t,t850,u!5D~m!g~x,y,u! with x5q/m,

y5n~m!m2t,

wherem has been chosen as the renormalization-group fl
parameter. It is now straightforward to derive th
renormalization-group equations for thedimensionlessscal-
ing functions f (y8,u) and g(x,y,u) defined by Eq.~2.14!.
Using Eqs.~2.6! and ~2.9! one obtains

F @21zn~u!#y8
]

]y8
1b~u!

]

]u
2

z0~u!

2 G f ~y8,u!50,

~2.15!

F2x
]

]x
1~21zn~u!!y8

]

]y8
1b~u!

]

]u
1zD~u!

1
z0~u!

2 Gg~x,y,u!50.

At the infrared stable renormalization-group fixed po
u5u* Eq. ~2.15! has the solutions

f ~y8,u* !5y8h0 /2z, g~x,y,u* !5y2~2hD1h0!/2zg8~xzy!,
~2.16!
-
s

f

.

on

w

t

where ha5za(u* ) for a5n,D,0; z521hn ; and g8 is a
scaling function left undetermined by Eq.~2.15!. Combining
Eqs.~2.12!, ~2.14!, and~2.16! one finds after a few manipu
lations

C~q,t,t8!t !5~ t8/t !11h0 /2zuquhD2zf C~ uquzt ! ~2.17!

for the short-time scaling behavior of the correlation fun
tion. Foru*50 one obtains the EW scaling exponents@see
Eq. ~1.4!# and h050 in Eq. ~2.17!. For anynonzerofixed
pointu* the exact scaling relationhD53z242d holds@see
Eq. ~2.8!#, which is equivalent to Eq.~1.7!. From Eq.~2.11!
one finally obtains for the short-time exponent@see Eq.
~2.17!#

11h0/2z[u512hD /z5~d14!/z22. ~2.18!

In d51 the exact valueu54/3 can be obtained from Eq
~1.8!. From numerical estimates forz in d52 andd53 ~see
Sec. I! one obtainsu.1.7 andu.2.1, respectively. The ex
ponent relation given by Eq.~2.18! simply means that the
short-time and the long-time scaling behavior of the corre
tion function areidentical, i.e., the short-time scaling behav
ior can be obtained by extrapolating thet8 dependence of
C(q,t,t8) from t8;t to t850. In fact, the scaling relation
given by Eq.~2.18! can be derived independently by analy
ing the fluctuation spectrum of the interface displacem
velocity averaged over a macroscopic portion of the inter
cial area@22#.

Finally, we remark that some alternative scaling forms
C can be obtained from the definition of the growth expon
b5a/z, which leads tou5d/z12b. The scaling behavior
displayed in Eq.~2.17! can then be written in the simplified
form C(q,t,t8!t)5t8ugC(uquzt), wheregC(y)5y2u f C(y).
In real space the correlation function has the scaling fo
C(x,t,t8!t)5(t8/t)uuxu2aGC(t/uxuz).

The absence of anomalous scaling exponents
G(q,t,t8) for t8!t does not neccessarily mean thatG is
analytic for t8→0. Exponents describing the asymptot
short-time behavior are in general functions of the dime
sionalityd and therefore may take noninteger values for c
taind. Similar considerations apply to the crossover behav
of G for t→` with fixed t2t8. For details we refer to Ap-
pendix C, where some results from perturbation theory
discussed in the cased51.

III. IDEAL MBE

In terms the deposition fieldh(q,t) and the response field
h̃(q,t) the dynamic functionalJ@ h̃,h# for Eq. ~1.9! @2,13,14#
is also written as the sum of the Gaussian part

J0@ h̃,h#5E ddq

~2p!d
E
0

`

dtHDh̃~q,t !h̃~2q,t !2h̃~q,t !

3S ]

]t
h~2q,t !1n1~q

2!2h~2q,t ! D J ~3.1!

and the interaction part
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672 55MICHAEL KRECH
J1@ h̃,h#5l1E ddq1
~2p!d

E ddq2
~2p!d

E
0

`

dt~q11q2!
2q1•q2

3h̃~2q12q2 ,t !h~q1 ,t !h~q2 ,t !, ~3.2!

where the initial conditionh(q,0)50 is again implicitly as-
sumed in Eqs.~3.1! and ~3.2!. As described in Sec. II and
Appendix A this special initial condition is sufficient to stud
the short-time scaling behavior of response and correla
functions for ideal MBE. The results of Gaussian theory
implied by Eq.~3.1! are summarized in Appendix A.

The further analysis of Eq.~1.9! can be carried out along
the lines of the analysis of the KPZ equation presented
Sec. II. First, we note that the invariance under the infinite
mal transformation given by Eq.~1.10! in the presence of the
initial conditionh(q,0)50 is restored by the transformatio

h8~q,t !5e2iq
2q•wth~q,t !2~2p!d

i

l1
w•

]

]q
d~q!,

h̃8~q,t !5e2iq
2q•wth̃~q,t !,

~3.3!

j 8~q,t !5e2iq
2q•wt j ~q,t !,

j̃ 8~q,t !5e2iq
2q•wt j̃ ~q,t !1~2p!d

i

l1
w•

]

]q
d~q!d~ t !,

where terms of the orderw2 have been neglected. In analog
with the Galileian invariance of Eq.~1.5!, this symmetry
leads to the nonrenormalization of the nonlinearity:l1

R5l1

†see also Eq.~2.7! and Refs.@13,16#‡. Second, Eq.~1.9! has
the global symmetry of mass conservation, which in contr
to Eq.~2.6! leads to theadditionalnonrenormalization of the
noise correlation amplitude@see Eq.~1.3!#: DR5D @13,16#.
If one defines an effective coupling constant by@13#

g1[Dl1
2/n1

3 ~3.4!

and the renormalized parametersn1
R , DR, andu,

n1
R[Zn1

n1 , DR[ZDD, u[
Zg1g1m

«

2d21pd/2~22d/4!

G~d/4!

G~d/2!
,

~3.5!

where«5d24 andm is an arbitrary momentum scale th
absorbs the naive dimension ofg1 @see Eq.~3.4!# then the
renomalization-group results for Eq.~1.9! in the long-time
limit can be summarized as~see also Appendix C!

Zn1
511

d26

d

u

«
1O~u2!, ZD51,

Zh5Z̃h51 , Zg5Zn1

23. ~3.6!

The 1/« poles indicate the presence of ultraviolet singula
ties and the nonrenormalization ofh and h̃ indicated in Eq.
~3.6! is again a consequence of Eq.~B1!. The corresponding
renormalization-group flow is therefore governed by on
two nontrivial Wilson functions, namely,
n
s

in
i-

st

-

zn1
~u!5

d26

d
u1O~u2!, b~u!5@d2423zn1

~u!#u,

~3.7!

where the relation betweenb(u) andzn1
(u) is exact@see Eq.

~3.6!#. For any infrared stable fixed pointu*Þ0 Eq. ~3.7!
yields zn1

(u* )[hn1
5(d24)/3, from which the exponents

given by Eq.~1.11! follow directly.
In order to investigate the short-time behavior of the

sponse and the correlation function of Eq.~1.9! short-time
renormalization factorsZ0 andZ̃0 are defined as in Eq.~2.9!.
From Eqs.~B1! and~2.10!, which also hold for Eq.~1.9! ~see
Appendix B!, one immediately obtains Z̃051 and
Z05ZD

22Z̃051, where Eq.~3.6! has been used. We thus co
clude that in contrast to KPZ dynamics for ideal MBEnei-
ther the response functionG(q,t,t8) nor the correlation
function C(q,t,t8) exhibit anomalous scaling behavior fo
t8!t, which is reminiscent of the short-time behavior
model B in critical relaxation@17#. Finally, we note that in
contrast to model B the noise in Eq.~1.9! is not conserved
@see Eq.~1.3!#. Equation~1.9! with purely conservednoise
has been considered in Ref.@16# ~see also Ref.@1#!. The
qualitative short-time behavior is the same as that descr
here. However, with special regard to MBE, the case
purely conserved noise does not play the same central ro
Eq. ~1.9! with nonconserved noise@2# and we therefore re-
frain from discussing any details here.

Concerning the asymptotic short-time behavior
G(q,t,t8) andC(q,t,t8) and the crossover to their asymp
totic long-time behavior one finds properties that are sim
to the KPZ behavior mentioned in Sec. II. Some details
tained from perturbation theory are reported in Appendix

IV. BALLISTIC DEPOSITION

The scaling behavior ofC(q,t,t8!t) according to Eq.
~2.17! can be tested numerically by a Monte Carlo simu
tion of a simple ballistic deposition model on a lattice wi
periodic boundary conditions@1#. For convenience we re
strict ourselves tod51 here. The continuum descriptio
used in Secs. II and III is replaced by a discretized desc
tion according to

h~x,t !5h„x5a j ,t5n/~FL !…[ahj~n!, ~4.1!

where the lattice constanta is assumed to be the same bo
in the plane of the substrate and perpendicular to it. T
lattice hasL sites,F is the incoming particle flux, andn is
the number of deposited particles. Furthermore, the incom
particle fluxF has been normalized to unity, so thatt in Eq.
~4.1! is dimensionless and given by the number of depos
layers. Finally,hj (n) defined by Eq.~4.1! is also dimension-
less and denotes the number of particles deposited at la
site j after n particles have been deposited on the latti
Ballistic deposition on a one-dimensional substrate is defi
by thedeterministicgrowth rule

hj~n11!5 max@hj21~n!,hj~n!11,hj11~n!# ~4.2!
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~see, e.g., Ref.@1#!, where the sitej in Eq. ~4.2! has been
selected randomly from theL sites of the lattice. For periodic
boundary conditionsh1(n) andhL(n) are treated as neare
neighbors in Eq.~4.2!.

In order to measure the scaling behavior ofC(q,t,t8)
given by Eq.~2.17! for the above discrete model a discre
Fourier transform is defined by

ĥq~n!5
1

L(j51

L

hj~n!e2 iqa j with q5
2p

L
m, ~4.3!

wherem is an integer and 0<m<L21. Using Eq.~4.3! we
define the discrete version of the height-height correlat
function in Fourier space by

CL~q,t,t8!5Š@ ĥq~n!2^ĥq~n!&#@ ĥq~n8!2^ĥq~n8!&#‹,

n5FLt, n85FLt8, ~4.4!

where the angular brackets denote an average over diffe
realizations of the deposition process and the time argum
t and t8 are reintroduced for convenience. For the measu
ment of the short-time exponentu @see Eq.~2.18!# it is suf-
ficient to measureCL(q,t,t8) for q50. In this case Eq.~4.4!
defines the time displaced correlation function of the s
tially averaged deposition heightĥq50(n), which can be
measured very quickly during the simulation. In practice
measurement is done after the deposition of one layer,
the time step isDt51.

Like a real deposition process, the simulation is char
terized by ana priori unknown microscopic aggregatio
time ta . A scaling behavior ofCL according to Eq.~2.17!
can only be observed fort8@ta . On the other hand,t8!t is
required for Eq.~2.17! to hold, so that short-time scaling i
restricted to the time windowta!t8!t. Furthermore, the
lattice sizeL must be chosen sufficiently large in order
avoid the onset of finite-size crossover effects ift81/z;L
when t8 is still much smaller thant. For the simulation de-
scribed heret52000 andL>480 fulfill the above require-
ments. In order to cope with the very small signal-to-no
ratio in each measurement ofCL(0,t,t8) for t8!t averages
are taken over 105 realizations. These are distributed over
individual runs at every point in time for all lattice sizes. Th
result is displayed in Fig. 1, whereCL(0,t,t8) is shown as a
function of t8/t for fixed t52000 and forL5480, 960, and
1920. For clarity the statistical error is shown only at a fe
points in time. As can be seen from Fig. 1, there is sligh
more than one decade int8/t available to determine the
short-time exponentu. Using the least-squares method in t
interval 0.03<t8/t<0.4, one finds

u51.34960.005 ~4.5!

for L51920 as the best estimate foru from the data shown
in Fig. 1. Although the agreement with the theoretical va
u54/3 is very good, there is still a systematic deviation w
outside the statistical error, which is one standard devia
in Eq. ~4.5!. One source of systematic errors is the fin
lattice size. For example, one findsu51.37 forL5480 and
for L5240 ~not shown in Fig. 1! one even hasu51.40,
which indicates that finite lattice corrections to Eq.~2.17! are
n

nt
ts
e-

-

a
.,

-

e

y

e
l
n

still visible in Eq. ~4.5! as a small systematic deviation o
u from its theoretical value. Furthermore, Eq.~2.17! displays
only theleadingsingular behavior of the correlation functio
in the KPZ universality class. For the ballistic depositio
model studied here corrections to scaling not captured by
~2.17! may lead to sizable numerical deviations. Therefo
the exponentu measured here should be interpreted as
effective exponent. However, the numerical data f
CL(0,t,t8) follow a simple power law governed by this ef
fective exponent quite accurately. Deviations from th
power law begin to show only fort8/t.0.4, where one is
clearly outside the short-time limit, and fort8/t,0.03, where
microscopic aggregation effects come into play.

In d52 the ballistic deposition model described here c
be used to estimate the dynamic exponentz of the KPZ
equation. The growth rule for ballistic deposition on a tw
dimensional square lattice withL3L lattice sites is the natu-
ral extension of Eq.~4.2!:

hj ,k~n11!5 max@hj21,k~n!,hj ,k21~n!,hj ,k~n!11,

hj11,k~n!,hj ,k11~n!#, ~4.6!

where periodic boundary conditions have been assumed.
lattice momentum has two components and is given
q5(2p/L)(m1 ,m2), wherem1 and m2 are integers with
0<m1, m2<L21. The correlation functionCL(q,t,t8) is
defined as in Eq.~4.4!, where the lattice Fourier transform
ĥq(n) of the deposition field is defined in analogy with Eq
~4.3!. Note thatn5FL2t with F normalized to unity relates
n andt in this case so thatt is again given by the number o
layers deposited on the substrate. The short-time expo
u can be measured as described above by measu
CL(q50,t,t8) @see Eq.~4.4!# for t8!t. In order to keep the
amount of CPU time needed for the simulation within re
sonable limits we reducet to t51000 and take averages ove
23104 realizations of the deposition process. It turns o

FIG. 1. Correlation functionCL(0,t,t8) in d51 as a function of
t8/t for 0.002<t8/t<1 andL5480 ~dotted line!, L5960 ~dashed
line!, and L51920 ~dash-dotted line!. The error bars are shown
only at a few selected points in time and represent one stand
deviation. The solid line displays a power law with the theoretic
short-time exponentu54/3. The data follow this power law rathe
accurately in the interval 0.03<t8/t<0.4 ~see the main text!.
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that a linear lattice size ofL5120 sites is already sufficien
to uniquely identify at least one decade for the scaling v
able t8/t in which CL(0,t,t8) obeys the simple power law
predicted by Eq.~2.17!. The overall behavior ofCL(0,t,t8)
for L>120 is qualitatively the same as displayed in Fig. 1,
that we refrain from reproducing it here. ForL5240 and
0.01<t8/t<0.1 we obtain

u51.65560.052 ~4.7!

from a least-squares fit as the best estimate foru from the
available data. Using Eq.~2.18! we obtain the estimate

z51.64260.052 ~4.8!

from Eq. ~4.7! as our estimate for the dynamical expone
z in the KPZ universality class ind52. A corresponding
estimate forz can be obtained forL5120, which differs by
less than half a standard deviation from the value given
Eq. ~4.8!, so that finite-size effects can be neglected with
the statistical error. Finally, we note that according to E
~1.7! and ~4.8! one hasa50.35860.052 for the roughnes
exponent. These values are in agreement with other num
cal data forz anda in d52 ~see Chap. 8 of Ref.@1# for a
collection of recent estimates! and they therefore provide
some support for the general validity of Eqs.~2.10! and
~2.18!.

V. SUMMARY AND DISCUSSION

The following main results have been obtained.
~i! The short-time dynamics of the KPZ equation can

analyzed in close analogy to the short-time behavior
model A in critical relaxation. Starting from the operat
identity given by Eq.~2.10!, the analogy can be summarize
as follows:

]

]t
h~q,0!52Dh̃~q,0!⇒Z0Z5ZD

22Z̃0Z̃; ~5.1a!

ZD5~ Z̃/Z!1/2, Z05Z̃0Þ1

for model A; and

Z5Z̃51, Z̃051, Z05ZD
22 ~5.1b!

for the KPZ equation. In contrast to model A, the anomalo
short-time scaling dimensionu of the deposition fieldh is
given by the dynamical exponentz @see Eq.~2.18!#, whereas
the response fieldh̃ does not exhibit an anomalous short-tim
scaling dimension. The capability of analytical methods w
regard to a full quantitative description of the crossover
havior from short to long times for the KPZ equation
limited. A perturbative analysis combined with dimension
considerations indicate thatq2(t2t8)2/td/2 is the scaling ar-
gument that governs the leading finite-time corrections to
asymptotic long-time scaling behavior of the response fu
tion G(q,t,t8) in d51. In the correlation function
C(q50,t,t8) finite-time corrections persist indefinitely. A
quantitative description of the full scaling behavior can pro
ably be obtained by combining perturbative methods w
mode coupling theory@10#.

~ii ! The short-time dynamics of ideal MBE according
Eq. ~1.9! can be analyzed in close analogy to the short-ti
i-
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e

behavior of model B in critical relaxation. Starting aga
from Eq. ~2.10!, neither the deposition fieldh nor the re-
sponse fieldh̃ exhibits anomalous short-time scaling dime
sions, which is the same behavior as observed for mode
@17#. In contrast to the KPZ equation, the infrared stab
renormalization-group fixed point isfinite in any dimension
of physical interest. Therefore purely perturbative metho
can be used to investigate the short-time to long-time cro
over behavior of the response and the correlation func
within, e.g., an«5d24 expansion. In combination with di
mensional arguments, the perturbative analysis indicates
the scaling argumentq4(t2t8)2/td/4 governs the leading
finite-time correction to the asymptotic long-time behavior
the response functionG(q,t,t8). In the correlation function
C(q50,t,t8) finite-time corrections again persist indefi
nitely.

~iii ! With a simple ballistic deposition model Eq.~2.18!
can be used to measure the dynamical exponentz for the
KPZ universality class from a simulation of the short-tim
behavior of the height-height correlation function. Althoug
such a simulation in principle requires short computer tim
the overall benefit is somewhat limited due to the sm
signal-to-noise ratio in the correlations fort8!t ~see Fig. 1!,
which in turn must be compensated for by running the sim
lation with high statistics. Ind51, where Eq.~1.8! gives the
exact scaling exponents, the numerical results foru agree
very well with the theoretical valueu54/3, which is equiva-
lent toz53/2. Ind52 Eq.~2.18! has been successfully use
to obtain a numerical estimate for the dynamical expon
z in the KPZ universality class@see Eq.~4.8!#.

Finally, it should be mentioned that the short-time scali
behavior of the magnetization in an Ising model with mod
A ~Glauber! dynamics can be efficiently used to determi
the dynamic and static critical exponents in the Ising univ
sality class@23#. It would be interesting to see to what exte
Monte Carlo methods similar to those described here an
Ref. @23# can be used to study the asymptotic long-time sc
ing behavior of interfacial growth models from their sho
time dynamics. The scaling relation betweenu and z may
also open an alternative path for direct numerical investi
tions of the KPZ equation.
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APPENDIX A: GAUSSIAN THEORY

The Gaussian partJ0 of the dynamic functional for Eq.
~1.5! is the same as for model A of critical relaxation@17#
and can be written in the symmetric form

J0@ h̃,h#5
1

2E ddq

~2p!d
E
0

`

dt@ h̃~2q,t !,h~2q,t !#AS h̃~q,t !

h~q,t !
D ,

~A1!
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whereh(q,0)50 and the response field fulfills the addition
condition h̃(q,`)50. The self-adjoint matrix operatorA is
then given by

A5S 2D 2
]

]t
2nq2

]

]t
2nq2 0

D . ~A2!

In terms of the source fieldsj̃ and j introduced by adding the
source term

Jj@ h̃,h#5E ddq

~2p!d
E
0

`

dt@ h̃~q,t ! j̃ ~2q,t !1h~q,t ! j ~2q,t !#

~A3!

to Eq. ~A1!, the generating functional

W0@ j̃ , j #5 lnE Dh̃E Dhexp$J0@ h̃,h#1Jj@ h̃,h#%

~A4!

is conveniently evaluated by solving the set of initial val
problems given by

2Dh̃~q,t !2S ]

]t
1nq2Dh~q,t !1 j̃ ~q,t !50, h~q,t !50

~A5!

S ]

]t
2nq2D h̃~q,t !1 j ~q,t !50, h̃~q,`!50

for h̃ and h. The more general initial condition
h(q,0)5h0(q) can be incorporated in the source fie
j̃ (q,t) by the replacement

j̃ ~q,t !→ j̃ ~q,t !1d~ t !h0~q!. ~A6!

The solution of Eq.~A5!, which is equivalent to calculating
the inverse of the operatorA @see Eq.~A2!#, is given by

S h̃~q,t !

h~q,t !
D 5E

0

`

dt8S 0 G0~q,t8,t !

G0~q,t,t8! C0~q,t,t8!
D S j̃ ~q,t8!

j ~q,t8!
D ,
~A7!

where

G0~q,t,t8!5Q~ t2t8!e2nq2~ t2t8!,

~A8!

C0~q,t,t8!5
D

nq2
~e2nq2ut2t8u2e2nq2~ t1t8!!

are the response and correlation functions of Gaussian th
for the KPZ equation, respectively. From Eqs.~A4! and~A8!
one obtains for the generating functional

W0@ j̃ , j #5E ddq

~2p!d
E
0

`

dtE
0

`

dt8@ j ~2q,t !G0~q,t,t8! j̃ ~q,t8!

1 1
2 j ~2q,t !C0~q,t,t8! j ~q,t8!#. ~A9!
ry

For the general initial conditionh(q,0)5h0(q) the corre-
sponding generating functional is obtained by applying
replacement Eq.~A6! directly to Eq.~A9!. The response and
correlation propagators can now be obtained by functio
derivatives of Eq.~A9! with respect toj̃ and j :

G0~q,t;q8,t8![^h~q,t !h̃~q8,t8!&0

5~2p!dd~q1q8!G0~q,t,t8!,

~A10!

C0~q,t;q8,t8![^h~q,t !h~q8,t8!&0

5~2p!dd~q1q8!C0~q,t,t8!,

where^ &0 denote the average with respect to the Gauss
distribution generated by Eq.~A1!. From momentum conser
vation it is obvious that thefull two-point correlation func-
tions G(q,t;q8,t8) and C(q,t;q8,t8) can be written in the
same form as their Gaussian counterparts@see Eq.~A10!#,
which serves as the definition of the full response funct
G(q,t,t8) and the full correlation functionC(q,t,t8). One
should also note that the simultaneous requireme
h(q,0)50 and h̃(q,`)50 forbid a Fourier transformation
with respect to time so that one has to stick to the ab
mixed representation of the propagators for further calcu
tions. Especially the normalization conditions imposed
correlation functions in order to definerenormalizedquanti-
ties @see Eqs.~2.6! and ~2.7!# have to be reformulated ac
cordingly. Note that the exponentsa and z implied by Eq.
~A8! are the Edwards-Wilkinson exponents given by E
~1.4!.

In close analogy to the considerations described abo
the Gaussian part of the dynamic functional for Eq.~1.9! is
the same as for model B of critical relaxation@17,19# and can
be written in the same symmetric form as given by Eq.~A1!
together with the conditionsh(q,0)50 and h̃(q,`)50. In
this case the self-adjoint matrix operatorA is given by

A5S 2D 2
]

]t
2n1q

4

]

]t
2n1q

4 0
D , ~A11!

whereq5uqu is the modulus of the momentum vectorq. The
generating functional given by Eq.~A4! is evaluated by solv-
ing the corresponding initial value problem forh̃(q,t) and
h(q,t) @see Eq.~A5!#. The solution can be written in the
same form as Eq.~A7!, where instead of Eq.~A8! one has

G0~q,t,t8!5Q~ t2t8!e2n1q
4~ t2t8!,

~A12!

C0~q,t,t8!5
D

n1q
4 ~e2n1q

4ut2t8u2e2n1q
4~ t1t8!!

for the response and the correlation function, respectively
Gaussian theory for Eq.~1.9!. With G0 andC0 taken from
Eq. ~A12!, the corresponding response and correlation pro
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gators are again given by Eq.~A10!. We close this section by
noting that the exponentsa andz implied by Eq.~A12! are
given by

z54, a5~42d!/2 ~A13!

in contrast to Eq.~1.11!.

APPENDIX B: PERTURBATION THEORY

Due to the presence of strong-coupling fixed points in
KPZ equation, ford>2 perturbation theory is only of lim-
ited value as compared to perturbation theory for mode
critical dynamics, for example. However, some rigorous
lations can be proved by analyzing the building blocks
perturbation theory for response and correlation functi
and therefore some details concerning perturbative calc
tions for Eqs.~1.5! and ~1.9! will be described below.

For the response and correlation propagators given by
~A10! we use the graphical representation shown in Fig. 2~a!.
The vertex and its analytical expression can be read off fr
Eq. ~2.2!; they are shown in Fig. 2~b!. The momentum car-
ried by the response field in Fig. 2~b! is 2q12q2. Contribu-
tions to response, correlation, and vertex functions can
constructed from the elements in Fig. 2 according to
standard Feynman rules of dynamic perturbation the
@9,17,19#. As a first example we analyze the response fu
tion G(q,t,t8). Any contribution toG from a perturbation
expansion can be cast into the form of the block diagr
shown in Fig. 3. According to the Feyman rules, the fi
vertex contribution to an arbitrary diagram forG has to be
arranged as shown in Fig. 3. The remainder of the diagr

FIG. 2. ~a! Graphical representation of the response propag
G0 and the correlation propagatorC0 @see Eq.~A10!#. ~b! Graphical
representation of the vertex of Eq.~1.5! @see Eq.~2.2!#. The wiggly
lines represent the response fieldh̃(q,t) and the straight lines rep
resent the deposition fieldh(q,t).

FIG. 3. Block diagram for the response functionG(q,t,t8). The
shaded triangle consists of an arbitrary number of vertices
propagators. To lowest order it is given by the vertex displayed
Fig. 2~b! ~see the main text!.
e
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e
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which is not neccessarily one-particle irreducible, is in
cated by the shaded triangle and may be interpreted a
arbitrary contribution to the three-point vertex function. T
lowest order this three-point vertex function is shown in F
2~b!. From the explicit momentum dependence of the ver
it is obvious that for zero momentumq85q the block dia-
gram displayed in Fig. 3 vanishes identically. One theref
finds the exact relation

G~q50,t,t8!5G0~q50,t,t8!5Q~ t2t8! ~B1!

for the response function of Eq.~1.5!.
In contrast to Fig. 3, the perturbative contributions to t

correlation functionC(q,t,t8) cannot be represented by
single block diagram. Instead, two types of block diagra
are required, as shown in Fig. 4. Due to the initial conditi
h(q,0)50 both block diagrams vanish identically fo
t850. Following Ref.@17#, Fig. 4 is used to obtain an exac
expression for thederivativeof C with respect to the time
argumentt8. The diagrams for]C/]t8 are of the same form
as those forC. The main difference between the diagram
shown in Figs. 4~a! and 4~b! is that in Fig. 4~b! the internal
time t1 is restricted to the interval 0<t1<t8 due to causality,
so that this block diagram vanishes identically fort850. The
remaining block diagram@Fig. 4~a!# is of the same type as
the block diagram for the response functionG shown in Fig.
3. One therefore has atermwisecorrespondence between th
perturbation series for ]C(q,t,t8)/]t8u t850 and
G(q,t,t850). Gaussian theory@see Eq.~A8!# yields

]

]t8
C0~q,t,t850!52De2nq2t52DG0~q,t,t850!

~B2!

and Figs. 3 and 4~a! then show that the two perturbatio
series only differ by an overall factor 2D. Therefore Eq.~B2!
implies the relation

]

]t8
C~q,t,t850!52DG~q,t,t850! ~B3!

between the correlation functionC and the reponse function
G of the KPZ equation order by order in perturbation theo
According to the standard Feynman rules, the arguments
sented above forC andG also hold for arbitraryn-point
correlation functions that differ only in the propagator~re-

or

d
n

FIG. 4. Block diagrams for the correlation functionC(q,t,t8).
~a! Incoming correlation propagatorC0(q1 ,t1 ;q8,t8). ~b! Incoming
response propagatorG0(q8,t8;q1 ,t1) @see Eq.~A10! and the main
text#. The shaded triangle has the same meaning as in Fig. 3.
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sponse or correlation! assigned to one of the external leg
Therefore Eq.~B3! already establishes the proof of the o
erator identity Eq.~2.10! used in Sec. II. However, it must b
pointed out here that the above arguments only constitu
rigorous proof of Eq.~B3! and therefore of Eq.~2.10! if the
renomalization-group fixed point is accessible by pertur
tion theory. For the KPZ equation this is only possible
d51. In d>2 one encounters the well-known stron
coupling behavior that forms a formidable obstacle for a
lytic theories of dynamic scaling of Eq.~1.5! @9,10#. For the
above derivation this means that Eq.~B3! may not hold in
d>2 at the renormalization-group fixed point despite its v
lidity to all orders in perturbation theory. Nonetheless, t
above perturbative analysis provides some evidence tha
~B3!, and therefore Eq.~2.10!, holds beyondd51.

For Eq. ~1.9! the building blocks of the perturbatio
theory can again be taken from Fig. 2, with the modificat
that the response and the correlation propagator@see Eq.
~A10!# are now given by Eq.~A12! and that the expressio
l1q1•q2(q11q2)

2 must be assigned to each vertex as can
read off from Eq.~3.2!. It is then straightforward to see tha
the arguments given above for the KPZ equation can be
rectly applied to ideal MBE dynamics, where no stron
coupling behavior is encountered in any spatial dimension
physical interest. The exact relations given by Eqs.~B1! and
~B3! and the operator identity Eq.~2.10! therefore also hold
for Eq. ~1.9!.

APPENDIX C: RESPONSE AND CORRELATION
FUNCTIONS

In order to justify Eqs.~2.7! and ~3.6! within the dimen-
sional regularization scheme@9# in theq,t representation and
to obtain some indication how the short-time to long-tim
crossover takes place the response and correlation func
of Eqs.~1.5! and~1.9! are calculated here to one-loop orde
The one-loop contribution to the response function for
KPZ equation is given by the block diagram shown in Fig.
where the shaded triangle is replaced by a single ve
shown in Fig. 2. The analytic expression for this diagram
then given by

G1~q,t,t8!5l2E
0

`

dt1E
0

`

dt2E ddq8

~2p!d
~q8•q!@q8•~q82q!#

3G0~q,t1 ,t8!G0~q82q,t2 ,t1!

3C0~q8,t2 ,t1!G0~q,t,t2!, ~C1!

whereG0 andC0 are given by Eq.~A8!. For simplicity we
consider only Eq.~C1! in the limit q→0, so that we can
employ the expansion

G0~q82q,t2 ,t1!5G0~q8,t2 ,t1!

3@112n~q8•q!~ t22t1!1O~q2!#.

~C2!

The q8 integration in Eq.~C1! to leading order inq is then
reduced to the calculation of second moments of a Gaus
in d dimensions. The result is
.

a

-

-

-

q.

e

i-
-
f

ns
.
e
,
x
s

an

G1~q,t,t8!5q2
g

2dpd/2G0~q,t,t8!

3~2n!22d/2E
t8

t

dt2E
t8

t2
dt1Fd22

2d
~ t22t1!

2d/2

2S d22

2d
2

t1
2t2

D t22d/2G , ~C3!

where the effective coupling constantg is defined by Eq.
~2.5!. The remaining integrals in Eq.~C3! can be easily per-
formed using dimensional regularization@9# with d521« in
the exponents oft22t1 and t2. Note that the prefactor
d22 in Eq. ~C3! comes from an angular integration an
must not be canceled by factors 1/« indicating UV singulari-
ties in the time integral@9#. With the definition ofu accord-
ing to Eq. ~2.6! (Zg51 at this order! one obtains for
G(q,t,t8)5G0(q,t,t8)1G1(q,t,t8)

G~q,t,t8!5G0~q,t,t8!H 12
q2

2
um2«Fd22

d«
@2n~ t2t8!#22d/2

1
d24

4d

@2n~ t2t8!#2

~2nt !d/2 G J . ~C4!

The 1/« pole ~the UV singularity! in Eq. ~C4! can be re-
moved, e.g., by requiringG(q,tR,0) to stay finite for«→0,
wheretR[1/(2m2nR) is a reference time andnR is given by
Eq. ~2.6!. Minimal subtraction yields the renormalizatio
factor Zn quoted in Eq.~2.7!. Note that the short-time con
tribution toG does not produce an additional 1/« pole. By
naively exponentiating theq dependence ofG in the long-
time limit one obtains at the infrared stable fixed po
u5u*Þ0,

GR~q,t,t8!5Q~ t2t8!expF2
q2

2m2 @2nRm2~ t2t8!#2/zG
3F12u*

q2

m2

d24

8d

@2nRm2~ t2t8!#2

~2nRm2t !d/2 G .
~C5!

The predictive value of Eq.~C5! is very limited because
u* is infinite for d>2. In d51 Eq. ~C5! indicates that the
combination (t2t8)2/td/2 of the time arguments governs th
crossover to the long-time scaling behavior ofG for t→`
with fixed t2t8. From dimensional arguments and the fa
that the short-time contribution toG does not produce addi
tional UV singularities we can infer that, according to E
~C5!, q2(t2t8)2/td/2 for d51 is the scaling argument tha
governs the leading finite-time correction to the asympto
long-time behavior ofG. Furthermore, Eq.~C5! shows that
GR is analytic int8 for t8!t at the one-loop level, but this
behavior may be modified in higher orders. Finally, we no
that the scaling form of the asymptotic long-time contrib
tion toGR(q,t,t8) given by the exponential in Eq.~C5! has
recently been derived by combining perturbative metho
with a mode coupling theory for the KPZ equation@10#.

The correlation functionC(q,t,t8) for Eq. ~1.5! can be
discussed in much the same way as the response func
This time we simplify the calculations even further by lim
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iting ourselves toq50. In this case only the diagram in Fig
4~b! contributes and we obtain to one-loop order

C~0,t,t8!52Dmin~ t,t8!

1
l2

2 E0
t

dt2E
0

t8
dt1E ddq

~2p!d
q4@C0~q,t1 ,t2!#

2,

~C6!

whereC0 is given by Eq.~A8!. The integrations in Eq.~C6!
can be easily performed and using dimensional regular
tion one arrives at

C~0,t,t8<t !52DS t81
um2«

4n«
$@2n~ t2t8!#22d/2

2@2n~ t1t8!#22d/21~2nt !22d/2

3@~42d!~ t8/t !2d~ t8/t !22d/2#% D , ~C7!

where Eq.~2.6! has been used withZg51. The 1/« pole in
Eq. ~C7! can be removed by demanding thatC(0,tR,tR) is
finite, wheretR[1/(4m2nR) is chosen as the reference tim
Using minimal subtraction one finds the renormalization f
tor ZD quoted in Eq.~2.7!. For t8!t Eq. ~C7! can be sim-
plified to

C~0,t,t8!t !52Dt8F12
u

«

d

2
~2nm2t8!12d/21O~ t82!G ,

~C8!

which explicitly shows that the short-time contribution
C produces an additional 1/« pole. Fort8.0 the renormal-
ized correlation function can be naively exponentiated at
infrared stable fixed pointu5u*Þ0. The result is

CR~0,t,t8<t !5DR$~ t1t8!@2nRm2~ t1t8!#u212~ t2t8!

3@2nRm2~ t2t8!#u2122ut8~2nRm2t !u21

12t8~2nRm2t8!u21%, ~C9!

whereu is the short-time exponent given by Eq.~2.18! and
d51 has been assumed. The short-time scaling behavio
t8!t is also reproduced by Eq.~C9!. However, from Eqs.
~2.10! and ~B1! one expects (]/]t8)CR(0,t,t850)52DR,
which is not reproduced by Eq.~C9!, becauseu.1. There-
fore Eq.~C9! can give only a rough idea of the true scalin
form of the correlation functionCR for the KPZ equation.
However, Eq.~C9! indicates that forq50 short-time correc-
tions to the correlation function persist indefinitly@see also
Eq. ~C7!#.

For ideal MBE dynamics according to Eq.~1.9!, the one-
loop contribution to the response function is again given
the block diagram shown in Fig. 3, where the shaded trian
is replaced by a single vertex. The analytic expression
this diagram is then given by
a-

-

e

or

y
le
r

G1~q,t,t8!54l1
2q2E

0

`

dt1E
0

`

dt2E ddq8

~2p!d
~q8•q!

3@q8•~q82q!#~q82q!2G0~q,t1 ,t8!

3G0~q82q,t2 ,t1!C0~q8,t2 ,t1!G0~q,t,t2!,

~C10!

whereG0 andC0 are given by Eq.~A12!. For simplicity, we
consider only Eq.~C10! in the limit q→0, i.e., we use the
expansion

G0~q82q,t2 ,t1!5G0~q8,t2 ,t1!

3@114n1q82~q8•q!~ t22t1!1O~q2!#.

~C11!

Theq8 integration in Eq.~C10! to leading order inq yields

G1~q,t,t8!5
q4

4

g1
2dpd/2

G~d/4!

G~d/2!
G0~q,t,t8!~2n1!

22d/4

3E
t8

t

dt2E
t8

t2
dt1Fd26

d
~ t22t1!

2d/4

2S d26

d
2
t1
t2

D t22d/4G , ~C12!

where the effective coupling constantg1 is defined by Eq.
~3.4!. As in Eq. ~C3!, the remaining integrals in Eq.~C12!
can be performed using dimensional regularization w
d541« in the exponents oft22t1 and t2. As usual, the
1/« poles indicate UV singularities in the time integral. Wi
the definition ofu according to Eq.~3.5! and Zg151, one

obtains forG(q,t,t8)5G0(q,t,t8)1G1(q,t,t8), in the limit
t→` with t2t85 const,

G~q,t,t8!5G0~q,t,t8!

3H 12
q4

2
um2«Fd26

d«
@2n1~ t2t8!#22d/4

1
3

4

d28

4d

@2n1~ t2t8!#2

~2n1t !
d/4 G J ~C13!

up to termsO„(t2t8)3/td/411
…. The 1/« pole ~the UV singu-

larity! in Eq. ~C13! can be removed by the minimal subtra
tion scheme described above, wheretR[1/(2m4n1

R) defines
the reference time andn1

R is given by Eq.~3.5!. One obtains
the renormalization factorZn1

quoted in Eq.~3.6!. By na-

ively exponentiating theq dependence ofG in the long-time
limit one obtains, at the infrared stable fixed pointu5u*
Þ0,

GR~q,t,t8!5Q~ t2t8!expF2
q4

2m4@2n1
Rm4~ t2t8!#4/zG

3F12
3

4
u*

q4

m4

d28

8d

@2n1
Rm4~ t2t8!#2

~2n1
Rm4t !d/4 G .

~C14!
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In contrast to Eq.~1.5!, the infrared stable fixed point for Eq
~1.9! is finite in any dimension of physical interest. In pa
ticular one hasu*5O(«), so that an« expansion around the
upper critical dimensiondc54 can be performed. The qual
tative behavior ofGR according to Eq.~C14! is very similar
to the behavior ofGR for the KPZ equation ind51 @see Eq.
~C5!#. Here the leading finite-time correction to the asym
totic long-time behavior is governed by the combinati
(t2t8)2/td/4 of time arguments.

The one-loop contribution to the correlation functio
a

er

e

-

C(q50,t,t8) for Eq. ~1.9! vanishes identically due to a
additional factorq2 in the vertex@see Eq.~C10!# so that

CR~0,t,t8!52Dmin~ t,t8!1O~u2!. ~C15!

Equation~C15! directly demonstrates thatZD51, as quoted
in Eq. ~3.6!, to one-loop order. As in the case of KPZ d
namics, Eq.~C15! demonstrates that finite-time correction
to the correlation function for Eq.~1.9! persist indefinitely
for q50.
T.
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