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Short-time scaling behavior of growing interfaces
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(Received 20 August 1996

The short-time evolution of a growing interface is studied within the framework of the dynamic
renormalization-group approach for the Kadar-Parisi-Zh@€igZ) equation and for an idealized continuum
model of molecular-beam epitaxy. The scaling behavior of response and correlation functions is reminiscent of
the “initial slip” behavior found in purely dissipative critical relaxatigmodel A and critical relaxation with
conserved order parameténodel B, respectively. Unlike model A the initial slip exponent for the KPZ
equation can be expressed by the dynamical expanéntl+1 dimensions, for whiclz is known exactly, the
analytical theory for the KPZ equation is confirmed by a Monte Carlo simulation of a simple ballistic depo-
sition model. In 2-1 dimensionsz is estimated from the short-time evolution of the correlation function.
[S1063-651%97)03001-9

PACS numbg(s): 68.35 Fx, 64.60 Ht, 05.70 Ln, 05.46j

[. INTRODUCTION Continuum descriptions of interfacial growth processes
can be obtained from general symmetry principles and con-
Interface formation and growth are typical processes irservation laws obeyed by the growth procgEks The result-
nonequilibrium systems. From a technological point of view,ing coarse-grained growth model is given by an evolution
two important examples are fluid flow in porous me(d equation forh(x,t) that has the form of a Langevin equation
in rock) [1] and deposition of atoms during molecular-beamwith Gaussian distributed noise. This has been done in Ref.
epitaxy (MBE) [1,2]. It is expected that at times much later [7] for the sedimentation of granular material and leads to
than typical aggregation times and on macroscopic lengtthe well known Edwards-WilkinsofEW) equation. It is
scales these interfaces develop a characteristic scaling behayiven by
ior, where the scaling exponents fall into certain dynamic 5
universality classefl—3] (see below In certain cases, how- R
ever, interfaces can also show turbulent, i.e., spatial, multi- Eh(x,t)—vV hOGt+n(x.0), 1.2
scaling behaviof4]. Usually ad-dimensional interface is
embedded ind+ 1)-dimensional space such that the inter-where the noisen(x,t) has a Gaussian distribution with
face position at timé can be described by a height function {7(x,t))=0 and
h(x,t), where x denotes the lateral position in a o , ,
d-dimensional reference plane given by, e.g., the surface of a (n(x,1)p(x',t"))=2D s(x—x")8(t—t"). (1.3
Egﬁzt\;;tf :2 %Eﬁéiggg]ﬁftihgfoénafﬁg ag?ﬁ(t;tg;g Sf(;ilt'QPThe parameters and D are assumed to be constants and
which is related to the time ydisplaced height-height’a\./e.rageg _) are taken over the noise distribution. From ex-
correlation  function  C(x—x',t,t")=(h(x,yh(x',t’)) plicit sollut|ons of Eq.(1..2) the exponents anda are known
—(h(x,t)){h(x’,t")), where a laterally translational invari- exactly in any dimensiod of the interface:
ant system is assumed. Fgt’—c, and finite|t—t’| the z2=2, a=(2—d)/2. (1.4)
correlation function displays the asymptotic scaling behavior
Note thatd=2 is the critical dimension of Eq1.2). One has
Cx—x",t,t") = |x—x|2*F(|t—t'|/|[x—Xx"|?), (1.1) a<0 ford>2 so thqt the height-height correla_tion function
C(x—x’,t,t") according to Eq(1.1) decayswith increasing
distance|x—x'|. In d=2 (a=0) the correlations increase
where @ denotes theoughnessexponent andz is thedy-  |ogarithmically.
namic exponent1,2]. For a laterally translational invariant ~ The simplest possible nonlinear extension to the EW
system the interfacial widtw?(t)=(h?(x,t))—(h(x,t))? is  equation was considered systematically in F&f. The re-
only a function oft and displays the scaling behavior sulting Langevin equation, usually denoted as the Kadar-
w(t)~t? for late times, whereg8= a/z is the growth expo- Parisi-Zhang KPZ) equation, is given by
nent. For MBE, as an example the scaling behavior displayed
in Eq. (1.1) gives access to the exponentsand z both
experimentally by reflection high-energy electron diffraction
(see, e.g., Chap. 16 of Rdfl]) and theoretically by con-
tinuum models[1,2] and Monte Carlo simulation§2,5].  with Gaussian distributed noise according to EQ3). The
Since the advent of the scanning tunneling microscope direcdditional parametex is again assumed to be a constant. In
imaging techniques for interfaces have also become an inthe long-time limit Eq.(1.5 has a global symmetry that is
portant experimental togb]. commonly denoted as Galileian invariance. This invariance

J A
ShOG) =vV2ht) + S V(D2 + 7(x,0), (1.5)
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originates from the equivalence of E@..5 to the Burgers for any infinitesimal vectow, yields the second exact scal-
equation for a  vorticity-free velocity  field ing relation «+z=4 [13,16. The exponentz and « for
v(x,t)=—Vh(x,t) and can be stated as follows. H{x,t) ideal MBE are therefore known exactly in any dimension of
solves Eq/(1.5) for some noise functiom(x,t) then physical interest:

1 1 z=(8+d)/3, a=(4—d)/3, (1.11
h’(x,t)=h(x—wt,t)—xw-x+ ﬁwzt (1.6
indicatingd=4 as the critical dimension of E@1.9).

In this paper Eqgs(1.5 and(1.9) are used as paradigms
for continuum descriptions of interfacial growth processes.
In linear theory(i.e., \=A;=0) their dynamical exponents
are given byz=2 andz=4 [see Eqs(1.4) and (A13)], re-
spectively, and therefore Eq4..5 and (1.9 may be viewed
1.7 as nonequilibrium analogs of the dynamical models A and B

for critical relaxation, respectively. In order to invesitgate the

Note that ind=2 the EW exponents also obey Eg.7). The ~ Scaling behavior of, e.gC(x—x',t,t’) for t'<t the initial
exponents of the KPZ equation are exactly known only inconditionh(x,t=0)=0 motivated by deposition processes is
d=1. where used simultaneously with Eql.5 and (1.3) or Egs.(1.9

and (1.3), respectively. Perturbative and nonperturbative as-
z=32, a=1/2 (1.8  Pects of short-time scaling for the two models are discussed
in Secs. Il and lll within the framework of dynamic renor-

due to the existence of a dissipation-fluctuation theoreninalization[17—19. Numerical results from ballistic deposi-
[9,11]. In d=2 numerical investigations indicate=1.6 and  tion are presented in Sec. IV and a summary of the main
a=0.4[1]. Ford>2 the asymptotic scaling behavior is gov- results is given in Sec. V.

erned either by the EW exponeniisee Eq.(1.4), weak-

coupling regime or by another set of exponents inaccessible Il. KPZ EQUATION

by analytical methodgstrong-coupling regimedepending
on the value of the effective coupling constant
g=D\?/(4v®) [1,9,10. In d=3 numerical evidence sug-
gestsz=1.7 anda=0.3 in the strong-coupling regimé ],
still indicating rough interfaces in contrast to the EW scaling
behavior ind=3 [see Eq.1.4)]. Furthermore, it is interest-
ing to note that the nonlinearity in Eq1.5) is the most
relevant one, i.e., if present it renders all other nonlinearities _ diq (=
irrelevant in the renormalization-group sense in the long- jo[h,h]zf—df dt
time limit. For intermediate times, however, the presence of (2m)%Jo
other nonlinearities in the Langevin equation gives rise to

various crossover phenomefig12]. The EW equation and X
the KPZ equation foh # 0 thus represent two different uni-
versality classes for interfacial growth. Fer<0 Eq. (1.5
can be viewed as a model for interfac@rrosionrather than

is a solution of Eg. (1.5 for the noise function
7' (x,t) = »(x—wt,t) and any constant vectov. An impor-
tant consequence is that the exponentsnd « of the KPZ
equation fulfill the exact scaling relatid®,10]

atz=2.

Due to the spatial translational invariance of the deposi-
tion processes studied here calculations are most conve-
niently performed in Fourier space. With the definition
h(x,t)=(2m) ~/d%gexp(q-x)h(a,t) for the Fourier trans-
form the dynamic functional/l h,h] for the KPZ equation
[9,17,2Q can be written as the sum of the Gaussian part

Dh(g,t)h(—q,t)—h(q,t)

0
ﬁh(—q.t)ﬂqzh(—q,t))} (2.0

and the interaction part

growth[8]. N _ ~ N[ di, [ d%, (=
With special regard to MBE growth it is worth noting that Jai[h,h]=— Ef 2 (2—7r)d dta;- g,
0

the requirement of mass conservation in ideal MBB] ex-
plicitly excludes the KPZ nonlinearity from a corresponding
coarse-grained continuum theory. A simple Langevin equa-
tion for ideal MBE has been proposed in Rgf3] (see also
Refs.[14,15):

Xh(—aq;—ap, (g, Hh(ay,t), (2.2

whereh(q,t) is the Fourier transform of the response field

[18]. The initial conditionh(q,0)=0, which is implicitly as-

J sumed in Eqs(2.1) and (2.2), breaks the temporal transla-

—h(x,t)=— v, V*h(x,t) + N VI Vh(x, ) ]2+ 7(x,1), tional invariance of the KPZ dynamics. In a more general

ot form this broken symmetry can be expressed in terms of an
(1.9 additional contribution taJ, that is localized at the time

where n(x,t) is chosen according to E¢L.3). Mass conser- surface” t=0:

vation in combination with Eq(1.3 immediately leads to c( dg
the exact scaling relationa@2—z+d=0 for Eqg. (1.9). Fur- Js[h]:EJ’ (Z—)GI[h(q,O)—ho(q)]z. 2.3
thermore, a global symmetry analogous to EQ6), which &

can be written in the operator forfi6] From the analogy of Eq2.3) with surface contributions to

1 the Ginzburg Landau functional in the theory of static sur-
X—X—2WtV2,  h—h— —w-X (110 face critical phenomeni1] and dimensional arguments the
A only possible fixed point values a@f under the renormalza-
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tion group arec=*«~ andc=0. In the latter case additive d—2u ) u )
renormalizations of are supposed to be absorbedtiitself, Z,=14 —— - TOW), Zp=1-—+0(u%),
which can be accomplished by the dimensional regulariza-

tion scheme. On the other hand, ER.3) generates a distri- Zh=zh=l , Zg=ZDZ;3, 2.7

bution function exp{JJh]) of initial configurations

h(q,0) of the deposition field that leaves the fixed-point\here the 1# poles indicate the presence of ultraviolet sin-
value c== as the only choice due to the requirement of g, 5rities[9]. The nonrenormalization di andh indicated
normah;ab_ﬂny of.d|str|but|on functions. Deviations of Eq. (2.7 is exactand a consequence of E(B1) (see
f_rom this f|xgd—p0|nt value 'theref_ore ger_lerate only CorreC'Appendix B. The relationZ,=ZpZ., % which is equivalent
tions to scaling[17,21], which will be disregarded here. to AR=X, is a consequenge of GVaIiIeian invariance in the

From Eg. (2.3 one then has the initial condition lona-ti o
B . . . g-time limit [see Eq.(1.6) and Refs[8,9,2(] and there-
h(d,0)=ho(q). As shown in Appendix Aho(q) can be in- ¢ 0" ~1c0 holds to all orders in perturbation theory. The

corporated into a source contribution to the dynamic func'renormalization ; ;
. . -group flow at late times is then governed by
tional [see Egs(A3) and (A6)] and therefore we stick to the Wilson functiong9,20]

ho(q) =0 in the following. The correlation and the response

propagator are now easily derived from E2.1). The results d—2
are summarized in Appendix A. £(u)= TU+O(U2), {p(u)=—u+0(u?),
The introduction of an initial condition, striktly speaking,
also breaks Galileian invariangeee Eq.(1.6)]. If one de- B(u)=[d—2+ ¢p(u)—3¢,(u)]u, 2.9

mandsh(x,0)=0 as the initial condition foh thenh’(x,t)
solves Eq. (1.5 with the new initial condition where the relation betweegd(u), {p(u), and/,(u) is again
h"(x,0)=—w-x/\. However, as indicated above, one only exact The higher-order corrections ty and{p, indicated in
has to transform the source fields accordingly in order tcgq.(2.8) vanish ind=1 due to the existence of a fluctuation-
restore the old initial condition. Therefore the Galilei trans-dissipation theorem9,11]. The fluctuation-dissipation theo-
formation[see Eqs(1.6), (A3), and(A6)] rem also require ,=Z in d=1 so that/,(u)=¢p(u) and
vID=vR/DR [see Egs.(2.6) and (2.7)]. We also want to
, . i d emphasize here thdt,(u) and {p(u) as given by Eq(2.8),
h'(q,t)=e™" ""‘h(q,t)—(qu)dXW %5(@’ like any other finite-order perturbation theory, do not give
access to the strong-coupling regime of Eg5) for d=2.
In analogy with critical phenomena in semi-infinite geom-
etries[21] modifications of the scaling behavior of response
(2.4  and correlation functions must be expected in the “time sur-
' face” t=0 [17]. In order to determine the corresponding
i’(g,t)y=e"'9"j(q,t), anomalous short-time scaling dimensions of response and
correlation functions we introduce two renormalization fac-
- o i d tors Z, andZ, by the renormalization prescriptidsee also
i'(@n=e"""j(q ) +(2m)w- 9 @ a) Ref. [17))

h(q,t)=e 19%h(q,t),

h(q,0)=Z&R h(a,00=Z5%R(q,0. (2.
restores the Galileian invariance of the generating functional (@0=2"1%a.0,  h(@0=2"1%a.0. (29

so that the corresponding Ward identitisee Ref[9]) re-  Thesez factors are determined by E(B1) and the operator
main valid. Note that Eq(2.4) should be read as an infini- jgentity
tesimal transformation, i.e., terms of ordef have been ne-
glected. d ~

The renormalization-group treatment of Ef.5) can now Eh(q,t=0) =2Dh(q,t=0) (2.10
be set up following standard procedure®9,20. For the
case at hand it is most convenient to combine the dimenderived in Appendix B. For the weak-coupling regime of the
sional regularization scheme for the KPZ equatiéhwith KPZ equation =1) the perturbative analysis of Appendix
the treatment of the short-time singularites documented i consitutes a rigorous proof of E(R.10 and the relations

Ref.[17]. One defines the effective coupling constant that follow from it (see below In the strong-coupling re-
gime (d=2), however, the corresponding perturbative
g=D\?/(4v®) (2.5  analysis no longer provides a rigorous proof of E2.10),
because relations that are valid order by order in perturbation
and the renormalized parameterd DR, andu [8,9,20, theory may be violated at a strong-coupling fixed pgsee
Appendix B. This has to be kept in mind for the following
WR=Z v, DR=Z,D, u=Z,gu®/[2% 179%2—d/2)], considerations, although the perturbative result can be re-
9 (2.6) garded as evidence in favor of the general validity of Eq.
(2.10.

wheres=d—2 andu is an arbitrary momentum scale that From Eq.(B1) for t’=0 we immediately find the exact
absorbs the naive dimension gf[see Eq.(2.5]. One finds identity Z,=1. Insertion of Egs(2.6) and (2.9) into Eq.
the renomalization factorf®,20] (see also Appendix IC (2.10 leads to the second exact identdy= ZEZZO, which
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determinesZ, in terms of the knowrZ factor Z, [see Eq. where ,=,(u*) for a=v,D,0; z=2+7,; andg’ is a

(2.7)]. These identities translate into tk&actrelations scaling function left undetermined by E@.15. Combining
- Egs.(2.12), (2.14), and(2.16 one finds after a few manipu-
Lo(u)=0, fo(u)=—2¢p(u) (21)  Ilations

among the corresponding Wilson functiofisee also Eq.
(2.8)]. From Eq.(2.11) one concludes thali) the response
function G(q,t,t’) does not exhibit an anomalous scaling
dimension in the short-time limit' —0 (i.e., t’<t) and i) for the short-time scaling behavior of the correlation func-
the anomalous short-time exponent of the correlation function. Foru* =0 one obtains the EW scaling exponefgse
tion Co(q.t,t’) can be expressed by long-time exponentsEd. (1.4)] and 7,=0 in Eq. (2.17. For anynonzerofixed
[see Eq.(1.8) and the following text These properties set pointu* the exact scaling relationp = 3z—4—d holds[see
KPZ short-time dynamics markedly apart from model A.  Eq. (2.8)], which is equivalent to Eq.1.7). From Eq.(2.11)

In order to determine the short-time scaling exponent oPne finally obtains for the short-time exponejsee Eg.
C(q,t,t'<t) we employ the “short-distance expansion” (2.17]
[17] h(g,t'—0)=0a(t")(d/dt")h(qg,t'=0)+ - - - inside the

C(q.t,t'<t)=(t'/t)"" 7/27g| o~ *fc(|q|’t) (2.17)

correlation functiorC, which means that 1+ npol2z=0=1—nplz=(d+4)/z—2. (2.18
C(q,t,t’<t)=0(t’)i,C(q,t,t’=0)+..., (2.12  In d=1 the exact value#=4/3 can be obtained from Eq.
ot (1.8). From numerical estimates farin d=2 andd=3 (see

Sec. ) one obtain®y=1.7 andf§=2.1, respectively. The ex-
ponent relation given by Eq2.18 simply means that the
short-time and the long-time scaling behavior of the correla-
o(t') =2 Y2oR(u,t' u), tion function areidentical i.e., the short-time scaling behav-
2.13 ior can be obtained by extrapolating the dependence of
9 ' C(q,t,t’) fromt’'~t to t'=0. In fact, the scaling relation
C(q,t,t’ =O)=Z$’2WCR(M,q,t,t’ =0u) given by Eq.(2.18 can be derived independently by analyz-
ing the fluctuation spectrum of the interface displacement
for the corresponding renormalized short-distance expansiorlocity averaged over a macroscopic portion of the interfa-
[see Eq.(2.12]. Using dimensional analysis, the renormal- cial area[22].

Employing the renormalization prescriptions given by Egs.
(2.6) and(2.9), one finds

d
at’

ized functions defined by Eq2.13 can be written in the Finally, we remark that some alternative scaling forms for
scaling form C can be obtained from the definition of the growth exponent
B=alz, which leads tof=d/z+28. The scaling behavior
Rt u)=t'f(y",u) with y'=v(u)u?’, displayed in Eq(2.17) can then be written in the simplified

(2.14  form C(q,t,t'<t)=t"’gc(|q|*), wheregc(y) =y~ *fc(y).
In real space the correlation function has the scaling form

J ’ (! 0 v|2a z
—CR ,0,t,t'=0u)=D X,y,u) with x=0a/u, C(X,t,t <t)_(t /t) |X| GC(t/|X| )
at’ (.9 )=Dlr)glxy.u) r The absence of anomalous scaling exponents for
) G(q,t,t") for t'<t does not neccessarily mean thatis
y=v(p)ut, analytic for t'—0. Exponents describing the asymptotic

h has b h th lizati f short-time behavior are in general functions of the dimen-
wheréu has been chosen as the renormalization-group O"gionalityd and therefore may take noninteger values for cer-

E;:?:Trf;ﬁ;atign- Is;ounO\(lav u2gglr1glsh:‘];?rr\;vk;ﬁengon?:srg(?al-the taind. Similar considerations apply to the crossover behavior
group €q of G for t—oo with fixed t—t’. For details we refer to Ap-

ing_ functionsf(y’,u) and g(x,y,u)_defined by Eq(2.14. pendix C, where some results from perturbation theory are
Using Eqgs.(2.6) and(2.9) one obtains discussed in the casb= 1.

, 9 a  Lo(w|,
[2+Z,(u)]y WWLIB(U)%— 5Ty, u)=0,

Il. IDEAL MBE
(2.19 _ Interms the deposition field(q,t) and the response field
d .0 d h(q,t) the dynamic functionalf h,h] for Eqg.(1.9) [2,13,14
X F(2+ W)y (9—y,+,8(u)ﬁ+§[,(u) is also written as the sum of the Gaussian part
Lo(u) — gd % ~ - -
5|90y =0. gt [ 5 “at DR@.0R(- a0 T
(2m)%)o
At the infrared stable renormalization-group fixed point 9
u=u* Eq.(2.15 has the solutions X Eh(—q,t)+vl(qz)zh(—q,t))] (3.

fly',u*)=y' 7’22 g(x,y,u*) =y 27t (x2y), . .
(2.19 and the interaction part
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-~ _ ddql dqu * 2 _ d—6 2 _
jl[h1h]_)\1J 2mi) @mil, dt(q;+092)°01- G2 {n(U)=—g~u+ O, B(u)=[d=4-3¢, ()]u,
(3.7

X (= g;—dz,H)h(q,H)h(gy ),

where the initial conditiorh(q,0)=0 is again implicitly as- Vhere the relation betwegs(u) and{,(u) is exaci{see Eq.

sumed in Egs(3.1) and (3.2. As described in Sec. Il and (3-6)]. For any infrared stable fixed point* #0 Eq. (3.7)

Appendix A this special initial condition is sufficient to study Yields ¢, (u*)=», =(d—4)/3, from which the exponents

the short-time scaling behavior of response and correlatiogiven by Eq.(1.12) follow directly.

functions for ideal MBE. The results of Gaussian theory as In order to investigate the short-time behavior of the re-

implied by Eq.(3.1) are summarized in Appendix A. sponse and the correlation function of E§.9) short-time
The further analysis of Eq1.9) can be carried out along renormalization factorg, andZ, are defined as in E¢2.9).

the lines of the analysis of the KPZ equation presented ifFrom Eqs(B1) and(2.10), which also hold for Eq(1.9) (see
Sec. II. First, we note that the invariance under the infinitesiappendix B, one immediately obtainszozl and

(3.2

mal transformation given by E@1.10 in the presence of the
initial condition h(q,0)=0 is restored by the transformation

’ _ i 2 - Wi _ I_ i
h’(qg,t)=€?%"9""h(q,t) (2w)d)\1W- 7 8(q),
h'(q,t)=e29°awh(q,t),
(3.3
j'(q,t) =29’ Wj(qt),
T’(q t)IGZiqzq'Wq(q t)+(277)di—W- i5(Q)5(t)
: ' N aq ’

where terms of the ordev? have been neglected. In analogy
with the Galileian invariance of Eql.5), this symmetry
leads to the nonrenormalization of the nonlineark{§=X\,
[see also Eq(2.7) and Refs[13,16]]. Second, Eq(1.9) has

ZO=ZSZZO= 1, where Eq(3.6) has been used. We thus con-
clude that in contrast to KPZ dynamics for ideal MBIgi-

ther the response functiori3(q,t,t’) nor the correlation
function C(q,t,t’) exhibit anomalous scaling behavior for
t’<t, which is reminiscent of the short-time behavior of
model B in critical relaxatio17]. Finally, we note that in
contrast to model B the noise in E(L.9) is not conserved
[see Eqg.(1.3)]. Equation(1.9) with purely conservedoise

has been considered in RéfL6] (see also Ref[1]). The
qualitative short-time behavior is the same as that described
here. However, with special regard to MBE, the case of
purely conserved noise does not play the same central role as
Eqg. (1.9 with nonconserved noisg2] and we therefore re-
frain from discussing any details here.

Concerning the asymptotic short-time behavior of
G(g,t,t") andC(q,t,t’) and the crossover to their asymp-
totic long-time behavior one finds properties that are similar
to the KPZ behavior mentioned in Sec. Il. Some details ob-

the global symmetry of mass conservation, which in contrastained from perturbation theory are reported in Appendix C.

to Eq.(2.6) leads to theadditionalnonrenormalization of the
noise correlation amplitudgsee Eq.(1.3]: DR=D [13,16.
If one defines an effective coupling constant[h]

g1=DA%/13 (3.4
and the renormalized parametefs, DR, andu,
Zg 91pm° I'(d/4)
R_ R_ _ 91
vi=Znry DT=2oD. U= oaams g Tian)
3.5

wheree=d—4 andu is an arbitrary momentum scale that
absorbs the naive dimension gf [see Eq.(3.4)] then the
renomalization-group results for E¢L.9) in the long-time
limit can be summarized asee also Appendix C

_ —6u 2 _
Z,=1+ —— —+0(u?), Zp=1,
Zv=2,=1, Z,=2,° (3.6

The 1k poles indicate the presence of ultraviolet singulari-
ties and the nonrenormalization bfandh indicated in Eq.
(3.6) is again a consequence of E&.1). The corresponding

renormalization-group flow is therefore governed by only

two nontrivial Wilson functions, namely,

IV. BALLISTIC DEPOSITION

The scaling behavior o€(q,t,t’<t) according to Eq.
(2.17 can be tested numerically by a Monte Carlo simula-
tion of a simple ballistic deposition model on a lattice with
periodic boundary conditiongl]. For convenience we re-
strict ourselves tod=1 here. The continuum description
used in Secs. Il and lll is replaced by a discretized descrip-
tion according to

h(x,t)=h(x=aj,t=n/(FL))=ah;(n), 4.0

where the lattice constaat is assumed to be the same both
in the plane of the substrate and perpendicular to it. The
lattice hasL sites,F is the incoming particle flux, and is

the number of deposited particles. Furthermore, the incoming
particle fluxF has been normalized to unity, so thah Eq.
(4.1) is dimensionless and given by the number of deposited
layers. Finally h;(n) defined by Eq(4.1) is also dimension-
less and denotes the number of particles deposited at lattice
site j after n particles have been deposited on the lattice.
Ballistic deposition on a one-dimensional substrate is defined
by the deterministicgrowth rule

hj(n+1)= maxh;_4(n),hj(n)+1h; (M] (4.2
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(see, e.g., Refl1]), where the sit§ in Eq. (4.2) has been 1000
selected randomly from the sites of the lattice. For periodic
boundary condition$;(n) andh, (n) are treated as nearest
neighbors in Eq(4.2. 100
In order to measure the scaling behavior ©fq,t,t")
given by Eq.(2.17) for the above discrete model a discrete 10t
Fourier transform is defined by
C0.tt)
. 1o i 27 1}
hq(n)=EZ h;(n)e "9 with q=Tm, (4.3
=1
wherem is an integer and € m=<L—1. Using Eq.(4.3 we 0.1
define the discrete version of the height-height correlation .
function in Fourier space by 0.01
, R ~ ~ ~ t/t
Cu(a.t,t")=([hg(n) —(hq(n)1[hg(n") = (hg(n")) ),
n=ELt n'=ELt' (4.4) FIG. 1. Correlation functior€, (0,t,t") in d=1 as a function of

t'/t for 0.002<t’'/t<1 andL =480 (dotted ling, L =960 (dashed

where the angular brackets denote an average over differeme)’ and L =1920 (daSh'd.Otteq I'r.])e The error bars are shown
. . . nly at a few selected points in time and represent one standard
realizations of the deposition process and the time arguments " . S . . _
t andt’ introd df . For th eviation. The solid line displays a power law with the theoretical
an are reintroguced for convenience. For the Measui€sy i time exponené=4/3. The data follow this power law rather
ment of the short-time exponent[see Eq.(2.18] it is suf-

s \ accurately in the interval 0.63t’/t<0.4 (see the main text
ficient to measur€, (q,t,t’) for g=0. In this case Eq4.4)
defines the time displaced correlation function of the spag;jj| yisible in Eq. (4.5 as a small systematic deviation of
tially averaged deposition heighity_o(n), which can be g from its theoretical value. Furthermore, Eg.17) displays
measured very quickly during the simulation. In practice apnly theleadingsingular behavior of the correlation function
measurement is done after the deposition of one layer, i.jn the KPZ universality class. For the ballistic deposition
the time step isAt=1. model studied here corrections to scaling not captured by Eq.
Like a real deposition process, the simulation is charac¢2.17 may lead to sizable numerical deviations. Therefore,
terized by ana priori unknown microscopic aggregation the exponent) measured here should be interpreted as an
time t,. A scaling behavior ofC, according to Eq(2.17  effective exponent. However, the numerical data for
can Only be observed fGl‘>ta On the other hand,’<t is CL(O,t,t’) follow a simp|e power law governed by this ef-
required for Eq.(2.17) to hold, so that short-time scaling is fective exponent quite accurately. Deviations from this
restricted to the time Windowa<t’<t. FUrthermOfe, the power law begin to show on|y fof’/t>o4, where one is
lattice sizeL must be chosen sufficiently large in order to clearly outside the short-time limit, and foi/t<0.03, where
avoid the onset of finite-size crossover effectst/if?~L microscopic aggregation effects come into play.
whent’ is still much smaller than. For the simulation de- In d=2 the ballistic deposition model described here can
scribed heret=2000 andL =480 fulfill the above require- pe used to estimate the dynamic exponensf the KPZ
ments. In order to cope with the very small signal-to-noiseequation. The growth rule for ballistic deposition on a two-

ratio in each measurement G (0t,t") for t'<t averages dimensional square lattice withx L lattice sites is the natu-
are taken over T0realizations. These are distributed over 40| extension of Eq(4.2):

individual runs at every point in time for all lattice sizes. The

result is displayed in Fig. 1, whek@, (0t,t’) is shown as a hj k(n+1)= max h;_q,(n),hj —1(n),h;  (N)+1,
function oft’/t for fixed t=2000 and forl. =480, 960, and
1920. For clarity the statistical error is shown only at a few hj+1k(n),hj e 2 (M1, (4.6

points in time. As can be seen from Fig. 1, there is slightly - .
more than one decade i/t available to determine the Where periodic boundary conditions have been assumed. The

short-time exponend. Using the least-squares method in thelattice momentum has two components a}nd 'S given by
interval 0.03<t’/t<0.4. one finds g=(2#/L)(m;,m,), wherem; and m, are integers with
’ 0=<m;, my<L—1. The correlation functiorC, (q,t,t’) is
0=1.349+0.005 (4.5  defined as in Eq(4.4), where the lattice Fourier transform
hq(n) of the deposition field is defined in analogy with Eq.

for L=1920 as the best estimate férfrom the data shown (4.3). Note thatn=FL?t with F normalized to unity relates
in Fig. 1. Although the agreement with the theoretical valuen andt in this case so thdtis again given by the number of
0=4/3 is very good, there is still a systematic deviation welllayers deposited on the substrate. The short-time exponent
outside the statistical error, which is one standard deviatio® can be measured as described above by measuring
in Eg. (4.5. One source of systematic errors is the finiteC, (q=0,t,t’) [see Eq(4.4)] for t’ <t. In order to keep the
lattice size. For example, one finds=1.37 forL=480 and amount of CPU time needed for the simulation within rea-
for L=240 (not shown in Fig. 1 one even ha®¥=1.40, sonable limits we reducdeto t=1000 and take averages over
which indicates that finite lattice corrections to E2.17) are ~ 2X 10* realizations of the deposition process. It turns out
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that a linear lattice size df =120 sites is already sufficient behavior of model B in critical relaxation. Starting again
to uniquely identify at least one decade for the scaling varifrom Eq. (2.10, neither the deposition fielth nor the re-
ablet'/t in which C_(0,t,t") obeys the simple power law gponse fielch exhibits anomalous short-time scaling dimen-
predicted by Eq(2.17). The overall behavior o€, (0,t,t")  sjons, which is the same behavior as observed for model B
for L=120 is qualitatively the same as displayed in Fig. 1, q17]. |n contrast to the KPZ equation, the infrared stable
that we refrain from reproducing it here. Far=240 and  renormalization-group fixed point Enite in any dimension
0.01=t'/t=<0.1 we obtain of physical interest. Therefore purely perturbative methods
0=1.655+0.052 @.7) can be usec_i to investigate the short-time to Iong_-time cross-
over behavior of the response and the correlation function
from a least-squares fit as the best estimategférom the ~ Within, e.g., ane=d—4 expansion. In combination with di-
available data. Using Eq2.18 we obtain the estimate mensional arguments, the perturbative analysis indicates that
the scaling argumeng*(t—t’)%/t%* governs the leading
z=1.642+0.052 (4.8) finite-time correction to the asymptotic long-time behavior of

, ) the response functio®(q,t,t’). In the correlation function
f“?m Eq. (4.7) as our e§t|mate fqr the dynamical eXp‘_)nentC(q=0,t,t’) finite-time corrections again persist indefi-
z in the KPZ universality class inl=2. A corresponding nitely

estimate forz can be obtained fok = 120, which differs by (iii) With a simple ballistic deposition model E(.18

less than half a standard deviation from the value given b¥:an be used to measure the dynamical expomefar the
Eq. (4.8), so that finite-size effects can be neglected WlthlnKPZ universality class from a simulation of the short-time

the statistical error. Finally, we note that according to Eqs . ! ) . )
(1.7) and (4.8) one hasa=0.358+0.052 for the roughness behavior of the height-height correlation function. Although

exponent. These values are in agreement with other numer§_uch a simulation in principle requires short computer times,

cal data forz anda in d=2 (see Chap. 8 of Ref1] for a the overall benefit is somewhat limited due to the small

collection of recent estimatesnd they therefore provide Signal-to-noise ratio in the correlations for<t (see Fig. 1,
some support for the general validity of Eq®.10 and which in turn must be compensated for by running the simu-

(2.18. lation with high statistics. Imi=1, where Eq(1.8) gives the
V. SUMMARY AND DISCUSSION exact scaling exponents, the numerical results €aagree
very well with the theoretical valué=4/3, which is equiva-

The following main results have been obtained. lent toz=3/2. Ind=2 Eq.(2.18 has been successfully used

(i) The short-time dynamics of the KPZ equation can bei optain a numerical estimate for the dynamical exponent
analyzed in close analogy to the short-time behavior of, i, the KPZ universality clasksee Eq.(4.8)].

model A in critical relaxation. Starting from the operator rinayy it should be mentioned that the short-time scaling
identity gl\{en by Eq(2.10, the analogy can be summarized behavior of the magnetization in an Ising model with model
as follows: A (Glaubej dynamics can be efficiently used to determine
the dynamic and static critical exponents in the Ising univer-
sality clasq23]. It would be interesting to see to what extent
Monte Carlo methods similar to those described here and in
Ref.[23] can be used to study the asymptotic long-time scal-
ing behavior of interfacial growth models from their short-
time dynamics. The scaling relation betweérand z may
7=7-1. ’20: 1, Zo=25° (5.1b) a}lso open an alternatiye path for direct numerical investiga-
tions of the KPZ equation.

for the KPZ equation. In contrast to model A, the anomalous

short-time scaling dimensiofl of the deposition fielch is

given by the dynamical exponenfsee Eq(2.18], whereas ACKNOWLEDGMENTS

the response field does not exhibit an anomalous short-time
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havior from short to long times for the KPZ equation is

limited. A perturbative analysis combined with dimensional

considerations indicate thgt(t—t')%/t%? is the scaling ar- APPENDIX A: GAUSSIAN THEORY

gument that governs the leading finite-time corrections to the

asymptotic long-time scaling behavior of the response func- The Gaussian patff, of the dynamic functional for Eq.

tion G(g,t,t’) in d=1. In the correlation function (1.5 is the same as for model A of critical relaxatifh7]

C(g=0,t,t") finite-time corrections persist indefinitely. A and can be written in the symmetric form

guantitative description of the full scaling behavior can prob-

ably be obtained by combining perturbative methods with

mode coupling theory10] Th 1f dg fwd ’ﬁ h A(
(i) The short-time dynamics of ideal MBE according to Jolh.h]=3 (2m)%)o tth(=a.t).h(=a.v]

Eqg. (1.9 can be analyzed in close analogy to the short-time

d ~ o~
51N(a.0=2Dh(q,0)=Z,Z= Z5%20Z; (5.19
Zo=(ZIZ)Y2,  Z,=Z,#1

for model A; and

'ﬁ(q,t)>
h(a,t)/’
(A1)
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whereh(q,0)=0 and the response field fulfills the additional For the general initial conditiom(q,0)=h(q) the corre-
conditionh(g,)=0. The self-adjoint matrix operatod is  sponding generating functional is obtained by applying the

then given by replacement EqA6) directly to Eq.(A9). The response and
correlation propagators can now be obtained by functional
2D _ % . derivatives of Eq(A9) with respect tgy andj:
A=l 4 2 0 ' (A2 Go(a,t:q’ ") =(h(a,Hh(a’,t"))
a M = (2m)95(a+ Q") Go(qt.t'),
In terms of the source fiel&?sandj introduced by adding the (A10)
source term Co(@tiq" 1) =(h(a.DN(Q".t"))o
~ dlq (> ~  ~ . —(2m)98(q+q’)Co(aut,t’

FiRm= [ ga ] dR@UT(- 0.0+ hiani(-a.0] (Zmoara)Co@ )

(A3)  where( ), denote the average with respect to the Gaussian
distribution generated by E¢A1l). From momentum conser-

to Eqg. (A1), the generating functional vation it is obvious that théull two-point correlation func-
tions G(q,t;q’,t") and C(q,t;q’,t") can be written in the
Wo[T,i]=|nf D’ﬁj Dhexp{jdﬁ,hﬁj[ﬁ,h]} same form as their Gaussian counterpgstse Eq.(A10)],
which serves as the definition of the full response function

(A4) G(q,t,t") and the full correlation functiorC(q,t,t’). One

is conveniently evaluated by solving the set of initial valueSould also  note that the simultaneous requirements
problems given by h(g,0)=0 andh(q,»)=0 forbid a Fourier transformation

with respect to time so that one has to stick to the above
5 ~ mixed representation of the propagators for further calcula-
v )h(q,t)ﬂ(q,t):O, h(g,t)=0 tions. Especially the normalization conditions imposed on
(A5) correlation functions in order to defimenormalizedquanti-
ties [see EQgs(2.6) and (2.7)] have to be reformulated ac-
d o= . - cordingly. Note that the exponents and z implied by Eq.
(E_Vq )h(q,t)ﬂ(q,t):O, h(q,)=0 (A8) are the Edwards-Wilkinson exponents given by Eq.
1.9).
for h and h. The more general initial condition In close_ analogy to the cons_ideratio_ns described _above,
h(g,0)=he(q) can be incorporated in the source field the Gaussian part of the dyng_mlc funcnqnal for EQ9) is
T(q t) by the replacement the same as for model B of cr|t|c.al reIaxatlbt_V,lq and can
’ be written in the same symmetric form as given by &)
T(a,t)—](g,0+8(t)he(q). (A6)  together with the conditioni(g,0)=0 andh(g,>)=0. In
this case the self-adjoint matrix operatdris given by

2Dh(q,t)—

The solution of Eq(A5), which is equivalent to calculating
the inverse of the operatot [see Eq(A2)], is given by d

2D e vq*
h(an| (= 0 Goat'.v|(T(at) A= . (A1)
=] dt’ , , . o d 4
h(q,t) 0 Go(q,t,t")  Co(a,t,t’)/\j(a,t’) 7 0
(A7
where whereq=|q| is the modulus of the momentum vectprThe
generating functional given by E(A4) is evaluated by solv-

Go(q,t,t’)z@(t—t’)ef”qzﬁft'), ing the corresponding initial value problem fbfg,t) and

(A8) h(qg,t) [see Eq.(A5)]. The solution can be written in the
same form as EqA7), where instead of EA8) one has

D 2 ’ 2 ’
C )= e v [t—t \_e—vq (t+t") )
O(q ) EZ( ) Go(q,t,tr):@(t_tr)efvlq‘l(t*t ),
are the response and correlation functions of Gaussian theory (A12)
for the KPZ equation, respectively. From E¢&4) and(A8) D
one obtains for the generating functional Co(qut,t’)=—3(e” ngft-t'| _ g- V1q4<t+t’))
v1q

~. diq (= R T
WO[J’J]ZJ (ZW)EJO dtJo dt'[j(—a,)Go(a,t,t)j(at")  for the response and the correlation function, respectively, of
Gaussian theory for Eq1.9). With Gy and C, taken from
+2i(—q,t)Co(q,t,t")j(q,t")]. (A9) Eg. (A12), the corresponding response and correlation propa-
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qa’ t’ q, t
(a)
C, = >
0 qy, t, q, t
q1
_ A (b)
9,

FIG. 4. Block diagrams for the correlation functi@y(q,t,t’).
FIG. 2. (a) Graphical representation of the response propagatof@ Incoming correlation propagatdh(ds.t;;q’,t"). (b) Incoming
Go and the correlation propagat6s [see Eq(A10)]. (b) Graphical ~ 'esponse propagateh(q’,t';ds.t;) [see Eq.(A10) and the main
representation of the vertex of E@..5) [see Eq(2.2)]. The wiggly text]. The shaded triangle has the same meaning as in Fig. 3.
lines represent the response figl(n,t) and the straight lines rep-

resent the deposition fieki(q,t). which is not neccessarily one-particle irreducible, is indi-

cated by the shaded triangle and may be interpreted as an

gators are again given by EGA10). We close this section by arbitrary contribution to the three-point vertex function. To

noting that the exponents andz |mp||ed by Eq(AlZ) are lowest order this three-point vertex function is shown in F|g
given by 2(b). From the explicit momentum dependence of the vertex

it is obvious that for zero momentunyf =q the block dia-
z=4, a=(4—-d)/2 (A13) gram displayed in Fig. 3 vanishes identically. One therefore
finds the exact relation
in contrast to Eq(1.11).
G(g=0,t,t")=Gy(q=0,t,t")=0(t—t") (B1)
APPENDIX B: PERTURBATION THEORY for the response function of E€L.5).
Due to the presence of strong-coupling fixed points in the In contrast to Fig. 3, the perturbative contributions to the
KPZ equation, ford=2 perturbation theory is only of lim- correlation functionC(q,t,t") cannot be represented by a
ited value as compared to perturbation theory for model Asingle block diagram. Instead, two types of block diagrams
critical dynamics, for example. However, some rigorous re-are required, as shown in Fig. 4. Due to the initial condition
lations can be proved by analyzing the building blocks off(0,0)=0 both block diagrams vanish identically for
perturbation theory for response and correlation functiong’=0. Following Ref[17], Fig. 4 is used to obtain an exact
and therefore some details concerning perturbative calcul@xpression for thelerivativeof C with respect to the time
tions for Egs.(1.5 and(1.9) will be described below. argument’. The diagrams fopC/dt’ are of the same form
For the response and correlation propagators given by E@s those foilC. The main difference between the diagrams
(A10) we use the graphical representation shown in Fig.2 shown in Figs. 4a) and 4b) is that in Fig. 4b) the internal
The vertex and its analytical expression can be read off frontimet, is restricted to the interval€t;<t’ due to causality,
Eq. (2.2); they are shown in Fig.(®). The momentum car- so that this block diagram vanishes identically for 0. The
ried by the response field in Fig(t8 is —q,;—,. Contribu-  remaining block diagraniFig. 4@)] is of the same type as
tions to response, correlation, and vertex functions can bthe block diagram for the response functi@shown in Fig.
constructed from the elements in Fig. 2 according to the3. One therefore hastarmwisecorrespondence between the
standard Feynman rules of dynamic perturbation theoryperturbation series for 0C(q,t,t')/ot'|;,—y and
[9,17,19. As a first example we analyze the response funcG(q,t,t’ =0). Gaussian theorjsee Eq(A8)] yields
tion G(q,t,t"). Any contribution toG from a perturbation
expansion can be cast into the form of the block diagram 9
shown in Fig. 3. According to the Feyman rules, the first at’
vertex contribution to an arbitrary diagram f@ has to be

arranged as shown in Fig. 3. The remainder of the diagram, ) )
and Figs. 3 and (4 then show that the two perturbation

series only differ by an overall factof® Therefore Eq(B2)
implies the relation

ColQ,t,t' =0)=2De *91=2DGy(q,t,t' =0)
(B2)

d

S Clatt’=0)=2DG(q,1,t'=0) (B3)

between the correlation functidd and the reponse function
FIG. 3. Block diagram for the response functiéiig,t,t’). The G of the KPZ equation order by order in perturbation theory.
shaded triangle consists of an arbitrary number of vertices and\ccording to the standard Feynman rules, the arguments pre-
propagators. To lowest order it is given by the vertex displayed inrsented above fo€ and G also hold for arbitraryn-point
Fig. 2(b) (see the main text correlation functions that differ only in the propagatoe-
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sponse or correlatignassigned to one of the external legs. , 9

Therefore Eq(B3) already establishes the proof of the op-  Ga(a,1,t")=0"5g_an Go(a,t,t")
. . . . a

erator identity Eq(2.10 used in Sec. Il. However, it must be

pointed out here that the above arguments only constitute a t t, [d—2

rigorous proof of Eq(B3) and therefore of Eq2.10) if the X(ZV)Z_dlzj/dtzj, dtl[ﬁ(b_tl)_d/z
renomalization-group fixed point is accessible by perturba- ‘ ‘

tion theory. For the KPZ equation this is only possible in d=2 t1| _4»

d=1. In d=2 one encounters the well-known strong- “l2d 2ty 2 ) (€3

coupling behavior that forms a formidable obstacle for ana-
lytic theories of dynamic scaling of E@L.5) [9,10]. For the  where the effective coupling constagtis defined by Eq.
above derivation this means that E&3) may not hold in  (2.5). The remaining integrals in EGC3) can be easily per-
d=2 at the renormalization-group fixed point despite its va-formed using dimensional regularizatif®] with d=2+¢ in
lidity to all orders in perturbation theory. Nonetheless, thethe exponents oft,—t; and t,. Note that the prefactor
above perturbative analysis provides some evidence that E—2 in Eg. (C3) comes from an angular integration and
(B3), and therefore Eg2.10, holds beyondi=1. must not be canceled by factorg Iihdicating UV singulari-

For Eq. (1.9 the building blocks of the perturbation ties in the time integral9]. With the definition ofu accord-
theory can again be taken from Fig. 2, with the modificationing to Eq. (2.6) (Z;=1 at this order one obtains for
that the response and the correlation propagidee Eq. G(q,t,t')=Gy(q,t,t')+G,(q,t,t")
(A10)] are now given by Eq(A12) and that the expression
M 101 - Ax(0+0,)% must be assigned to each vertex as can be
read off from Eq.(3.2). It is then straightforward to see that Gl
the arguments given above for the KPZ equation can be di-
rectly applied to ideal MBE dynamics, where no strong- d—4 [2p(t—t")]?
coupling behavior is encountered in any spatial dimension of 4d (2vt)972
physical interest. The exact relations given by E&d) and
(B3) and the operator identity Eq2.10 therefore also hold The 1& pole (the UV singularity in Eq. (C4) can be re-
for Eq. (1.9). moved, e.g., by requiring(q,tR,0) to stay finite fors—0,
wheretR=1/(2u?v®) is a reference time and® is given by
Eq. (2.6). Minimal subtraction yields the renormalization
factor Z, quoted in Eq.(2.7). Note that the short-time con-
tribution to G does not produce an additionaklpole. By

In order to justify Eqs(2.7) and (3.6) within the dimen-  naively exponentiating thg dependence o6 in the long-
sional regularization scheni@] in theq,t representation and time limit one obtains at the infrared stable fixed point
to obtain some indication how the short-time to long-timeu=u* #0,
crossover takes place the response and correlation functions
of Egs.(1.5 and(1.9) are calculated here to one-loop order.
The one-loop contribution to the response function for the
KPZ equation is given by the block diagram shown in Fig. 3,

2

q |42 1\72-d/2
1——U,LL [K[Zv(t_t )]

|t!t/):GO(q|tit,) 2

(C4

APPENDIX C: RESPONSE AND CORRELATION
FUNCTIONS

2
GR(q,tyt'):(t—t’)exr{—Zq—Mz[ZvR,uz(t—t’)]z’z}

. . . 2 d_4[2VR 2(t_t/)]2
where the shaded triangle is replaced by a single vertex « 1—u*q— s
shown in Fig. 2. The analytic expression for this diagram is w? 8d  (2vRu?t)9?
then given by (CH

Y » dig’ | ., The predictive value of Eq(CY) is very limited because
Gi(q.tt)=A fo dtlfo dtzf (2m@ @@=l y* is'infinite for d=2. In d=1 Eq. (C5) indicates that the
combination {—t')?/t%? of the time arguments governs the
X Gp(0,t;,t")Go(q" —q,tz,1) crossover to the long-time scaling behavior ®ffor t— o
, with fixed t—t’. From dimensional arguments and the fact
X Co(0',12,11) Go(Q,tu12), (CY) that the short-time contribution t6 does not produce addi-
) o tional UV singularities we can infer that, according to Eq.
whergGo andC, are given by .Eq(A8). For simplicity we (C5), q2(t—t")2/t%2 for d=1 is the scaling argument that
consider only Eq(C1) in the limit g—0, so that we can goyerms the leading finite-time correction to the asymptotic
employ the expansion long-time behavior ofG. Furthermore, Eq(C5) shows that
GR is analytic int’ for t'<t at the one-loop level, but this
Go(q' —q,t2,t1) =Go(q’,t2,t1) behavior may be modified in higher orders. Finally, we note
, _ 2 that the scaling form of the asymptotic long-time contribu-
X[1+2v(q"-q)(to~t) + O] tion to GR(q,t,t’) given by the exponential in E4C5) has
(C2 recently been derived by combining perturbative methods
with a mode coupling theory for the KPZ equatift0].
The q’ integration in Eq.(C1) to leading order irg is then The correlation functionC(q,t,t") for Eq. (1.5 can be
reduced to the calculation of second moments of a Gaussiafiscussed in much the same way as the response function.
in d dimensions. The result is This time we simplify the calculations even further by lim-



678 MICHAEL KRECH 55

iting ourselves tayj=0. In this case only the diagram in Fig. , 2 o[ o ddq’ ,
4(b) contributes and we obtain to one-loop order Gi(q,t,t")=4N1q fo dtlJO dtzf W(q -q)
C(0,t,t')=2Dmin(t,t") X[q"-(q' =) ](9' = 9)*Go(,ty,t")
A2 [t v diq A ) X Go(q' —q,t2,t1)Co(q",t2,11)Go(q,t,15),
+ ?Jodtzjo dtlJ Wq [Co(a,ty,t2)]7%, (C10

(CB  whereG,y andC, are given by Eq(A12). For simplicity, we
consider only Eq(C10) in the limit q—0, i.e., we use the
whereC,, is given by Eq.(A8). The integrations in EqC6)  €Xpansion
can be easily performed and using dimensional regulariza- , _ ,
tion one arrives at GO(q _Q1t2 ytl)_GO(q ,tz,tl)

X[1+4r,0"%(q"- 9)(t,—t1) + O(g*)].

u —&
C(Ot,t'st)=2D|t"'+ 4‘:8 {[2v(t—t")]?~ 9" c11

Theq' integration in Eq{(C10 to leading order im yields

q* g, [I(d/4)

—[2v(t+t") ]2 424 (2pt)2 92

AL ’ 2—-d/4
X[(4—d)(t,/t)_d(t,/t)zidlz]} ’ (C7) Gl(q,t,t )_ 4 W F(d/Z) GO(q;Lt )(2V1)
xJ'td t2d d-6 —dia
where Eq.(2.6) has been used witAy=1. The 1£ pole in v b " b —g (=t
Eq. (C7) can be removed by demanding th&(0,tR tR) is
finite, wheretR=1/(4u2v®) is chosen as the reference time. _ ( d—6 _ t_1>td/4 (C12
Using minimal subtraction one finds the renormalization fac- d to) 2 |

tor Zp quoted in Eq.(2.7). Fort’ <t Eq. (C7) can be sim-
plified to where the effective coupling constagt is defined by Eq.
(3.4). As in Eq. (C3), the remaining integrals in EC12
ud can be performed using dimensional regularization with
C(O,t,t'<t)=2Dt'|1— — =(2vp?t’ ) 92+ 0(t'?) |, d=4+¢ in the exponents of,—t; andt,. As usual, the
g2 1/e poles indicate UV singularities in the time integral. With
(C8  the definition ofu according to Eq(3.5) and Zy,=1, one
obtains forG(q,t,t')=Gq(q,t,t")+G4(q,t,t"), in the limit
which explicitly shows that the short-time contribution to t— o with t—t’ = const,
C produces an additional d/pole. Fort’>0 the renormal-
ized correlation function can be naively exponentiated at the G(q,t,t’)=Gg(q,t,t")

infrared stable fixed point=u* #0. The result is 4

q _|d-6 -
X:l—?u,u S[d—[Zvl(t—t')]z dra
CROO,t,t'<t)=DR{(t+t")[207u?(t+1")]" 1= (t—t") €
— —1+\12
X[20Rp?(t=t)]" =26t (207t +;d4d8 [2(]}2151t1t)td/z] H €13
+2t' (20Ru?t) 071, (C9)

up to termsO((t—t")%/t94*1). The 1k pole (the UV singu-

where 4 is the short-time exponent given by E@.18 and Igrity) in Eq. (C13 can be removed by the minignal sgbtrac-
d=1 has been assumed. The short-time scaling behavior fdion scheme described above, whefe=1/(2.%v7) defines
t'<t is also reproduced by E4C9). However, from Egs. the reference time andf is given by Eq.(3.5). One obtains
(2.10 and (B1) one expects 4/dt’)CR(0,t,t'=0)=2DR,  the renormalization factoZV1 quoted in Eq.(3.6). By na-
which is not reproduced by Eq(C9), becauseg>1. There- ively exponentiating the dependence db in the long-time
fore Eq.(C9) can give only a rough idea of the true scaling limit one obtains, at the infrared stable fixed pointu*
form of the correlation functiorCR for the KPZ equation. #0,

However, Eq(C9) indicates that foq=0 short-time correc-

tions to the correlation function persist indefiniflyee also R q* R 4 o

Eq. (C7)]. G"(g,t,t")=0(t—t")ex —2—M4[2V1,u (t—t")]%

For ideal MBE dynamics according to Ed..9), the one-
loop contribution to the response function is again given by
the block diagram shown in Fig. 3, where the shaded triangle x| 1= 24 A 8d (20707
is replaced by a single vertex. The analytic expression for H Yim
this diagram is then given by (C19

3 ,q°d-8 [ZV?M“(t—t’)]T
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In contrast to Eq(1.5), the infrared stable fixed point for Eq. C(g=0,t,t") for Eq. (1.9 vanishes identically due to an

(1.9 is finite in any dimension of physical interest. In par- additional factorg? in the vertex{see Eq(C10)] so that

ticular one hasi* =0(¢), so that are expansion around the

upper critical dimensiond,=4 can be performed. The quali- CcR(0,t,t’)=2Dmin(t,t’) +O(u?). (C1H5

tative behavior ofGR according to Eq(C14) is very similar

to the behavior oGR for the KPZ equation imi=1 [see Eq. Equation(C15) directly demonstrates th@,=1, as quoted

(CH5]. Here the leading finite-time correction to the asymp-in Eqg. (3.6), to one-loop order. As in the case of KPZ dy-

totic long-time behavior is governed by the combinationnamics, Eq.(C15 demonstrates that finite-time corrections

(t—t")?/t%* of time arguments. to the correlation function for Eq.1.9) persist indefinitely
The one-loop contribution to the correlation function for g=0.
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